Anaerobic biodegradation of perfluorooctane sulfonate (PFOS) and microbial community composition in soil amended with a dechlorinating culture and chlorinated solvents.

Sci Total Environ

U.S. Army Corps of Engineers, U.S. DOD Environmental Programs Branch, Environmental Division, Headquarters, Washington, D.C. 20314, USA.

Published: July 2024

Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.4 ± 11.0 % removal of PFOS over the 45-day experiment. In contrast, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations did not decrease in the same microcosms. The low or non-detectable concentrations of potential metabolites in full PFAS analyses, including after application of the total oxidizable precursor assay, indicated that defluorination occurred to non-fluorinated compounds or ultrashort-chain PFAS. Nevertheless, additional research on the metabolites and degradation pathways is needed. Population abundances of known dehalorespirers did not change with PFOS removal during the experiment, making their association with PFOS removal unclear. An increased abundance of sulfate reducers in the genus Desulfosporosinus (Firmicutes) and Sulfurospirillum (Campilobacterota) was observed with PFOS removal, most likely linked to initiation of biodegradation by desulfonation. These results have important implications for development of in situ bioremediation methods for PFAS and advancing knowledge of natural attenuation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172996DOI Listing

Publication Analysis

Top Keywords

pfos removal
12
perfluorooctane sulfonate
8
pfos
8
sulfonate pfos
8
pfas
5
anaerobic biodegradation
4
biodegradation perfluorooctane
4
pfos microbial
4
microbial community
4
community composition
4

Similar Publications

Wastewater treatment plants (WWTPs) could be conduits of polyfluoroalkyl substances (PFAS) contaminants in the environment. This study investigated the fate of 40 PFAS compounds across nine municipal WWTPs with varying treatment capacity and processes. High concentrations of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in wastewater, with the ratio of their total concentrations (∑PFCAs/∑PFSAs) always greater than one.

View Article and Find Full Text PDF

Invincible growth in waste production is the consequence of overpopulation, which should be addressed to reduce the occupied landfill surface needed for their disposal and to alleviate the leachate of extremely hazardous material into the soil and water bodies. In this study, copper (Cu) was extracted from fly ash of a municipal solid waste incinerator by an electro-chemical method, which was optimized to recover the highest amount of Cu, and then it was chelated with 4-aminobenzoic acid (AM) and terephthalic acid (TM) in an aqueous phase. The obtained composites were then heated to form a porous calcinated copper-carbon composite and utilized to adsorb the forever contaminant of PFOS from aqueous solutions.

View Article and Find Full Text PDF

Enhanced selective removal of PFAS at trace level using quaternized cellulose-functionalized polymer resin: Performance and mechanism.

Water Res

December 2024

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:

The effective protocol for treating per- and polyfluoroalkyl substances (PFAS) in water at environmentally relevant concentrations (∼ ng L) has received unprecedented attention due to the stringent drinking water standards. In order to ensure safe water treatment, sorption using quaternary ammonium functionalized strong-base anion exchange resins (SB-AERs) is considered a viable option for treating PFAS when compared to commercialized activated carbon, as SB-AERs can be in situ regenerated with long-term operation capabilities. However, the harsh conditions required for traditional direct synthesis of SB-AERs (such as prolonged reaction times, complex processes, and environmental pollution caused by the organic reagents used) limit their applications.

View Article and Find Full Text PDF

Enhancing rejection of short-chain per- and polyfluoroalkyl substances by tailoring the surface charge of nanofiltration membranes.

Water Res

December 2024

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China. Electronic address:

Nanofiltration (NF) effectively removes per- and polyfluoroalkyl substances (PFAS) from water but struggles with short-chain PFAS (i.e., those containing less than 6 perfluorinated carbons) due to size exclusion inefficiency.

View Article and Find Full Text PDF

Occurrence, Transport, and Full-Scale Adsorptive Removal of PFAS in Electroplating Parks in China.

Environ Sci Technol

December 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China.

The electroplating industry is an important source of per- and polyfluoroalkyl substances (PFAS) contamination, but there is a lack of comprehensive studies on the occurrence, transport, and removal of PFAS in electroplating parks. In this study, we investigated typical electroplating parks in China and conducted the first full-scale removal of PFAS from chromium-plating wastewater using pore-enlarged granular activated carbon (GAC) and hydrophobic anion exchange resin (AER). The results showed that 6:2 fluorotelomer sulfonate (6:2 FTS) gradually replaced perfluorooctanesulfonate (PFOS) in China's electroplating industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!