Unveiling structure and performance of tea-derived cellulose nanocrystals.

Int J Biol Macromol

State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.. Electronic address:

Published: June 2024

In this study, cellulose was extracted from black tea residues to produce black tea cellulose nanocrystals (BT-CNCs) using an optimized acid hydrolysis method. The structure and performance of BT-CNCs were evaluated. The results showed that the optimal conditions for acidolysis of BT-CNCs included a sulfuric acid concentration of 64 %, a solid-liquid ratio of 1:18 (w/v), a hydrolysis temperature of 45 °C, and a hydrolysis time of 50 min. The optimization process resulted in a 44.8 % increase in the yield of BT-CNCs, which exhibited a crystallinity of 68.57 % and were characterized by the typical cellulose I structure. The diameters of the particles range from 5 to 45 nm, and they exhibit aggregation behavior. Notably, BT-CNCs demonstrated excellent storage stability, and the Tyndall effect occurred when exposed to a single beam of light. Although the thermal stability of BT-CNCs decreased, their primary thermal degradation temperature remained above 200 °C. The colloidal nature of BT-CNCs was identified as a non-Newtonian fluid with "shear thinning" behavior. This study introduces a novel method to convert tea waste into BT-CNCs, increasing the yield of BT-CNCs and enhancing waste utilization. BT-CNCs hold promise for application in reinforced composites, offering substantial industrial value.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132117DOI Listing

Publication Analysis

Top Keywords

bt-cncs
10
structure performance
8
cellulose nanocrystals
8
black tea
8
yield bt-cncs
8
unveiling structure
4
performance tea-derived
4
cellulose
4
tea-derived cellulose
4
nanocrystals study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!