Cell wall invertase (CIN) is a vital member of plant invertase (INV) and plays a key role in the breakdown of sucrose. This enzyme facilitates the hydrolysis of sucrose into glucose and fructose, which is crucial for various aspects of plant growth and development. However, the function of CIN genes in foxtail millet (Setaria italica) is less studied. In this research, we used the blast-p of NCBI and TBtools for bidirectional comparison, and a total of 13 CIN genes (named SiCINs) were identified from foxtail millet by using Arabidopsis and rice CIN sequences as reference sequences. The phylogenetic tree analysis revealed that the CIN genes can be categorized into three subfamilies: group 1, group 2, and group 3. Furthermore, upon conducting chromosomal localization analysis, it was observed that the 13 SiCINs were distributed unevenly across five chromosomes. Cis-acting elements of SiCIN genes can be classified into three categories: plant growth and development, stress response, and hormone response. The largest number of cis-acting elements were those related to light response (G-box) and the cis-acting elements related to seed-specific regulation (RY-element). qRT-PCR analysis further confirmed that the expression of SiCIN7 and SiCIN8 in the grain was higher than that in any other tissues. The overexpression of SiCIN7 in Arabidopsis improved the grain size and thousand-grain weight, suggesting that SiCIN7 could positively regulate grain development. Our findings will help to further understand the grain-filling mechanism of SiCIN and elucidate the biological mechanism underlying the grain development of SiCIN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.148499 | DOI Listing |
BMC Plant Biol
January 2025
College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
Backgrounds: Adapter proteins (APs) complex is a class of heterotetrameric complexes comprising of 4-subunits with important regulatory functions in eukaryotic cell membrane vesicle trafficking. Foxtail millet (Setaria italica L.) is a significant C model plant for monocotyledon studies, and vesicle trafficking may plays a crucial role in various life activities related to growth and development.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Food Engineering and Bioprocess Technology Program, Department of Food, Agriculture, and Bioresources, School of Environment, Resources, and Development, Asian Institute of Technology, Khlong Luang, Pathumthani 12120, Thailand. Electronic address:
This research investigates the impact of microwave power, processing time, and solid-to-solvent ratio on protein recovery from foxtail millet (Setaria italica), using an artificial neural network (ANN) and genetic algorithm (GA). The extracted protein and subsequent hydrolysates were also evaluated for their techno-functional, structural, and digestibility properties. The ANN model, trained with the Levenberg-Marquardt algorithm and optimized by a GA, identified optimal extraction conditions (960 W, 66.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
Background: As modern industrial activities have advanced, the prevalence of microplastics and nanoplastics in the environment has increased, thereby impacting plant growth. Potassium is one of the most crucial nutrient cations for plant biology. Understanding how polyethylene terephthalate (PET) treatment affects potassium uptake will deepen our understanding of plant response mechanisms to plastic pollution.
View Article and Find Full Text PDFPLoS One
December 2024
College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
Alfalfa (Medicago sativa) is known to release allelopathic substances to affect the germination and growth of other plants, which have the potential to be applied in controlling weeds. Green foxtail (Setaria viridis) and barnyardgrass (Echinochloa crus-galli), as malignant weeds worldwide, also pose a serious threat to alfalfa in northern China. In this study, the sensitivity of the two weeds to the extracts from the first, second, and third stubbles of six varieties were investigated to further reveal the allelopathic interference of different varieties of alfalfa on notorious weeds.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Science, Hebei Agricultural University, Baoding 071001, P. R. China.
Transketolase (TKL; EC 2.2.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!