Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH) and volatile sulfur compounds (VSCs), including hydrogen sulfide (HS), and methyl mercaptan (CHS), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH) and nitrous oxide (NO) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124115 | DOI Listing |
Waste Manag
January 2025
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Here, we constructed a novel bacterial deodorant (BD) composed of Delftia tsuruhatensis, Paracoccus denitrificans, Pediococcus acidilactici, and Bacillus velezensis. The BD alone removed 64.84 % of NH, 100 % of HS, and 63.
View Article and Find Full Text PDFAnal Chem
December 2024
Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China.
The prevention and control of odor gas generated from kitchen waste are significant missions in research on environmental pollution. Because of the high complexity and variability of kitchen waste, the development of a suitable technique with high sensitivity for the accurate detection of odor gas is an urgent and core task in this frontier field. Here, a technique combining surface-enhanced Raman spectroscopy (SERS) and artificial intelligence (AI) is explored for detecting malodorous components in the leachate of kitchen waste.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:
This study explored the odor composition and emission in chicken manure composting process, employing chemical fixatives and biochar to mitigate odors effectively. Compost maturity, ammonia, sulfur-containing odor emissions, as well as the bacterial and fungal community structure were analyzed to assess composting performance and mechanisms. The results indicated that four malodorous substances were identified as major contributors: dimethyl disulfide (MeS), hydrogen sulfide (HS), methyl sulfide (MeS), and ammonia (NH).
View Article and Find Full Text PDFJ Breath Res
November 2024
LRM Statistical Consulting, LLC, West Orange, NJ, United States of America.
Oral malodor negatively impacts a person's quality of life and may affect up to 50% of the population. The aim of this randomized, placebo and no-product controlled, evaluator-blind, proof-of-concept study was to evaluate the effectiveness and safety of the single use of two experimental lozenges containing the laccase enzyme and green coffee extract (with and without flavor) in reducing intrinsic oral malodor. Following 12-16 h of avoidance of oral hygiene,156 generally healthy subjects presented at screening and baseline visits with a mean organoleptic odor intensity (OI) score of ⩾2 and an OralChromareading of ⩾125 parts per billion (ppb) hydrogen sulfide (HS) gas and were randomly assigned to receive either one of the two experimental lozenges, a placebo lozenge, or no-product.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2024
School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong, 518055, P.R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!