Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli. This study delves into the expression of nattokinase in E. coli as a soluble protein followed by its biochemical characterization and functional analysis for fibrinolytic activity. E. coli BL21C and pET32a vector host strain with pGro7 protein chaperone induced with IPTG at 16 °C 180 rpm for 16 h enabled the production of recombinant nattokinase in soluble fraction. Enzymatic assays demonstrated its protease activity, while characterization revealed optimal catalytic conditions at 37 °C and pH 8.0, with remarkable stability over a broad pH range (6.0-10.0) and up to 50 °C. The kinetic constants were determined as follows: Km = 25.83 ± 3.43 μM, Vmax = 62.91 ± 1.68 μM/s, kcat = 38.45 ± 1.06 s, and kcat/Km = 1.49 × 10 M s. In addition, the fibrinolytic activity of NK, quantified by the fibrin plate hydrolysis assay was 1038 ± 156 U/ml, with a corresponding specific activity of 1730 ± 260 U/mg and the assessment of clot lysis time on an artificial clot (1 mg) was found to be 51.5 ± 2.5 min unveiling nattokinase's fibrinolytic potential. Through molecular docking, a substantial binding energy of -6.46 kcal/mol was observed between nattokinase and fibrin, indicative of a high binding affinity. Key fibrin binding residues, including Ser300, Leu302, and Asp303, were identified and confirmed. These mutants affected specifically the fibrin binding and not the proteolytic activity of NK. This comprehensive study provides crucial conditions for the expression of protein in soluble form in E. coli and biochemical properties paving the way for future research and potential applications in medicine and biotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2024.110026 | DOI Listing |
Arch Biochem Biophys
October 2024
Liaoning Provincial Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules, Shenyang, 110036, China; Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China; School of Pharmacy, Liaoning University, Shenyang, 110036, China. Electronic address:
Nattokinase (NK) is an enzyme that has been recognized as a new potential thrombolytic drug due to its strong thrombolytic activity. However, it is difficult to maintain the enzyme activity of NK during high temperature environment of industrial production. In this study, we constructed six NK mutants with potential for higher thermostability using a rational protein engineering strategy integrating free energy-based methods and molecular dynamics (MD) simulation.
View Article and Find Full Text PDFArch Biochem Biophys
July 2024
Department of Biotechnology, Sector-25, Panjab University, Chandigarh, 160014, India. Electronic address:
Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of General Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. Electronic address:
Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation.
View Article and Find Full Text PDFPathogens
March 2024
Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa 252-0880, Kanagawa, Japan.
is a major cariogenic organism because of its ability to form biofilms on tooth surfaces. Bacteriocins produced by (known as mutacins) are indirect pathogenic factors that play a role in the persistence of this microbe in the oral environment. Nattokinase, a subtilisin-like alkaline serine protease, potently inhibits biofilm formation without affecting growth.
View Article and Find Full Text PDFHeliyon
April 2024
Laboratory of Pharmacology, Graduate School of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima, 737-0112, Japan.
Nattokinase (NK), also known as subtilisin NAT (EC 3.4.21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!