Cytochrome c oxidase IV isoform 1 (COX4-1) regulates the proliferation, migration and invasion of trophoblast cells via modulating mitochondrial function.

Placenta

Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China. Electronic address:

Published: June 2024

Introduction: Spontaneous miscarriage is a common complication of early pregnancy. Previous studies have shown that mitochondrial function plays an important role in establishment of a successful pregnancy. Cytochrome c oxidase subunit 4 isoform 1 (COX4I1), a component of electron transport chain complex Ⅳ, is required for coupling the rate of ATP production to energetic requirements. However, there is very limited research on its role in trophoblast biology and how its dysfunction may contribute to spontaneous miscarriage.

Methods: Placental villi (7-10 weeks gestational age) collected from either induced termination of pregnancy or after spontaneous miscarriage were examined for expression of COX4I1. COX4I1 was knocked down by siRNA transfection of primary isolates of EVT cells. Real-time cell analysis (RTCA) and 5-Ethynyl-2'-deoxyuridine (EdU) were used to detect changes in proliferation ability after COX4I1 knockdown of EVT cells. Migration and invasion indices were determined by RTCA. Mitochondrial morphology was observed via MitoTracker staining. Oxidative phosphorylation, ATP production, and glycolysis in COX4I1-deficient cells and controls were assessed by a cellular energy metabolism analyzer (Seahorse).

Results: In placental villous tissue, COX4I1 expression was significantly decreased in the spontaneous miscarriage group. Knockdown of COX4I1 inhibited EVT cell proliferation, increased the migration and invasion ability and mitochondrial fusion of EVT cells. Mitochondrial respiration and glycolysis were impaired in COX4I1-deficient EVT cells. Knockdown of MMP1 could rescue the increased migration and invasion induced by COX4I1 silencing.

Discussion: Low expression of COX4I1 leads to mitochondrial dysfunction in EVT, resulting in altered trophoblast function, and ultimately to pregnancy loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.placenta.2024.04.011DOI Listing

Publication Analysis

Top Keywords

migration invasion
16
evt cells
16
spontaneous miscarriage
12
cytochrome oxidase
8
mitochondrial function
8
cox4i1
8
atp production
8
expression cox4i1
8
increased migration
8
cells
6

Similar Publications

Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo.

View Article and Find Full Text PDF

The pro-tumor effects of mast cell (MC) in the tumor microenvironment (TME) are becoming increasingly clear. Recently, MC were shown to contribute to tumor malignancy by supporting the migration of tumor-associated macrophages (TAMs), suggesting a relationship with tumor immunity. In the current study, we aimed to examine the correlation between MC infiltration and neoadjuvant chemoradiotherapy (nCRT) response for locally advanced rectal cancer (LARC).

View Article and Find Full Text PDF

Open surgical treatment of a chronic traumatic arteriovenous fistula in the lower extremity: A case report.

Int J Surg Case Rep

January 2025

Department of Vascular Surgery, The third hospital of mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China.

Introduction And Importance: A traumatic arteriovenous fistula (TAVF) is a vascular injury where an artery and a vein become abnormally connected. Although endovascular intervention is often the first choice for TAVF, some special cases still require open surgery.

Case Presentation: A 65-year-old man developed a chronic AVF in the lower superficial femoral artery (SFA) one year after a farming accident.

View Article and Find Full Text PDF

SOX2 promotes the glycolysis process to accelerate cervical cancer progression by regulating the expression of HK2.

Acta Histochem

January 2025

Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China. Electronic address:

Background: Cervical cancer is a major health burden in females worldwide, available studies indicated that sex-determining region Y-box 2 (SOX2) is closely related to the malignant phenotypes of multiple cancers including cervical cancer. However, the underlying mechanisms were blurred.

Experimental Procedures: A bioinformatics analysis was conducted to investigate the clinical correlation between SOX2 and cervical cancer.

View Article and Find Full Text PDF

Discovery of novel dual tubulin and MMPs inhibitors for the treatment of lung cancer and overcoming drug resistance.

Eur J Med Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China. Electronic address:

Nowadays, hybrid molecule with dual targets activity or effect is regarded as an effective strategy for combating the drug resistance development in cancer therapy. Herein, novel of bifunctional conjugates targeting tubulin and MMPs inhibitors were synthesized. Among them, 15j exhibited robust anticancer activity in vitro and in vivo, with IC values of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!