A novel sample double dilution calibration method (SDDCM) and an automatic flow system with in-syringe reaction and spectrophotometric detection were developed for determining lithium in biological samples. The method is based on the reaction of lithium with Thorin in an alkaline medium and the signal was measured at 480 nm. The reaction was performed simultaneously for both standards and samples in three syringes of the automatic flow system. The method was validated and successfully applied to the determination of lithium in synthetic and pharmaceutical samples, with results consistent with the ICP OES method. The novel calibration method, developed for the determination of lithium in biological samples, uses a sample with two dilution degrees. Using the method, the concentration of the analyte is determined by relating the signal for a less diluted sample to the calibration plot for a more diluted sample and vice versa. The implementation of the calibration method was facilitated by preparing solutions directly in the flow system. The use of two sample dilutions makes it possible to determine the analyte in the sample without preliminary preparation. Moreover, obtaining two results based on signals for a sample diluted to different degrees allows them to be verified for accuracy. The proposed approach was successfully verified by the determination of lithium in certified reference materials of blood serum and urine. Using the developed method lithium was determined within the concentration range of 0.06-1.5 mg L, with precision (CV, %) less than 6.7, and accuracy (RE, %) better than 6.9. The detection limit was 0.03 mg L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!