Leptospiral LipL45 lipoprotein undergoes processing and shares structural similarities with bacterial sigma regulators.

Biochem Biophys Res Commun

Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Programa de Pós-graduação Em Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil. Electronic address:

Published: July 2024

Leptospirosis is a widespread zoonotic infectious disease of human and veterinary concern caused by pathogenic spirochetes of the genus Leptospira. To date, little progress towards understanding leptospiral pathogenesis and identification of virulence factors has been made, which is the main bottleneck for developing effective measures against the disease. Some leptospiral proteins, including LipL32, Lig proteins, LipL45, and LipL21, are being considered as potential virulence factors or vaccine candidates. However, their function remains to be established. LipL45 is the most expressed membrane lipoprotein in leptospires, upregulated when the bacteria are transferred to temperatures resembling the host, expressed during infection, suppressed after culture attenuation, and known to suffer processing in vivo and in vitro, generating fragments. Based on body of evidence, we hypothesized that the LipL45 processing might occur by an auto-cleavage event, deriving two fragments. The results presented here, based on bioinformatics, structure modeling analysis, and experimental data, corroborate that LipL45 processing probably includes a self-catalyzed non-proteolytic event and suggest the participation of LipL45 in cell-surface signaling pathways, as the protein shares structural similarities with bacterial sigma regulators. Our data indicate that LipL45 might play an important role in response to environmental conditions, with possible function in the adaptation to the host.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150057DOI Listing

Publication Analysis

Top Keywords

shares structural
8
structural similarities
8
similarities bacterial
8
bacterial sigma
8
sigma regulators
8
virulence factors
8
lipl45 processing
8
lipl45
6
leptospiral lipl45
4
lipl45 lipoprotein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!