A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of luminescent materials on the aquatic macrophyte Vallisneria natans and periphytic biofilm. | LitMetric

AI Article Synopsis

  • Luminescent materials can enhance light energy use in plants, but their effects on aquatic plants and biofilms are not well-studied.
  • The study focused on how two luminescent materials, DTB-A and DTB-M, impacted the growth of the aquatic plant Vallisneria natans and surrounding biofilm, finding that low concentrations boosted growth and photosynthesis, while high concentrations increased enzyme activity.
  • Results showed that DTB treatments altered the plant's structure and physiology but reduced its ability to remove nutrients like ammonia and phosphate at higher concentrations, and affected the microbial community diversity in the biofilm.

Article Abstract

Luminescent materials can adjust the spectrum of light energy utilization by plants. However, current research on the effects of luminescent materials on aquatic plants and periphytic biofilms is limited. This study investigated the effects of the luminescent materials 4-(di-p-tolylamino) benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino) benzaldehyde-M (DTB-M) on the submerged macrophyte Vallisneria natans (V. natans) and periphytic biofilm. Result demonstrated that low concentrations of DTB (0.1 μM) significantly promoted the growth and photosynthetic rate of V. natans. In terms of enzyme activity, exposure to a higher concentration of DTB (10 μM) increased the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT). A combination of DTB-A and DTB-M treatment significantly changed the V. natans morphology and physiological characteristics, reducing the thickness of the cell wall and subsequently, promoting protein accumulation in leaves. There was no difference in the removal of ammonia or phosphate by V. natans at the 0.1 μM concentration, and the removal of ammonia and phosphate by V. natans decreased significantly as the concentration of luminescent material increased. A total of 3563 OTUs were identified in the biofilm community. The microbial community was dominated by Pseudomonas and Fusobacteria. Furthermore, results showed that an obvious decrease in diversity in the DTB-A and DTB-M mixed treatment group. In addition, the migratory aggregation of DTB molecules in plants was observed by fluorescence imaging. Overall, these findings extend our understanding of the mechanism of effect of luminescent materials on submerged macrophytes and their periphytic microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108672DOI Listing

Publication Analysis

Top Keywords

luminescent materials
20
materials aquatic
8
macrophyte vallisneria
8
vallisneria natans
8
natans periphytic
8
periphytic biofilm
8
effects luminescent
8
dtb-a dtb-m
8
removal ammonia
8
ammonia phosphate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!