A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extension of Exactly-Solvable Hamiltonians Using Symmetries of Lie Algebras. | LitMetric

Extension of Exactly-Solvable Hamiltonians Using Symmetries of Lie Algebras.

J Phys Chem A

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

Published: May 2024

Exactly solvable Hamiltonians that can be diagonalized by using relatively simple unitary transformations are of great use in quantum computing. They can be employed for the decomposition of interacting Hamiltonians either in Trotter-Suzuki approximations of the evolution operator for the quantum phase estimation algorithm or in the quantum measurement problem for the variational quantum eigensolver. One of the typical forms of exactly solvable Hamiltonians is a linear combination of operators forming a modestly sized Lie algebra. Very frequently, such linear combinations represent noninteracting Hamiltonians and thus are of limited interest for describing interacting cases. Here, we propose an extension in which the coefficients in these combinations are substituted by polynomials of the Lie algebra symmetries. This substitution results in a more general class of solvable Hamiltonians, and for qubit algebras, it is related to the recently proposed noncontextual Pauli Hamiltonians. In fermionic problems, this substitution leads to Hamiltonians with eigenstates that are single Slater determinants but with different sets of single-particle states for different eigenstates. The new class of solvable Hamiltonians can be measured efficiently using quantum circuits with gates that depend on the result of a midcircuit measurement of the symmetries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c00993DOI Listing

Publication Analysis

Top Keywords

solvable hamiltonians
16
hamiltonians
9
exactly solvable
8
lie algebra
8
class solvable
8
quantum
5
extension exactly-solvable
4
exactly-solvable hamiltonians
4
hamiltonians symmetries
4
symmetries lie
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!