Uncovering the mechanisms associated with CO capture through mineralization is vital for addressing rising CO levels. Iron in planetary soils, the mineral cycle, and atmospheric dust react with CO through complex surface chemistry. Here, the effect of cations on the growth of carbonate films on iron surfaces was investigated. polarized modulated infrared reflection absorption spectroscopy was used to measure CO adsorption and oxidation of iron in MgCl(aq) and KCl(aq), compared to FeCl(aq) at the air/electrolyte/iron interface. The cation was found to influence the film composition and growth rates, as corroborated by infrared and photoelectron spectroscopy. In MgCl(aq), a mixture of hydromagnesite, magnesite, and a Mg hydroxy carbonate film was grown on iron, while in KCl(aq), a potassium-rich bicarbonate film was grown. The cations were found to affect the rates of hydroxylation and carbonation, confirming a specific cation effect on carbonate film growth. In the submerged region, a heterogeneous mixture of lepidocrocite and iron hydroxy carbonate was produced, suggesting that Fe dominates the surface products. Surface roughness measurements from atomic force microscopy indicate iron initially corrodes faster in MgCl(aq) than KCl(aq), due to the Cl ions that initiate pitting and corrosion. In this region, cations were not found to affect the morphologies. This study shows surface corrosion is necessary to provide nucleation sites for film growth and that the cations influence the carbonate film, relevant for CO capture and planetary processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c01096DOI Listing

Publication Analysis

Top Keywords

carbonate film
12
air/electrolyte/iron interface
8
mgclaq kclaq
8
hydroxy carbonate
8
film grown
8
cations affect
8
film growth
8
film
7
iron
6
carbonate
5

Similar Publications

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

Impact of Citric Acid on the Structure, Barrier, and Tensile Properties of Esterified/Cross-Linked Potato Peel-Based Films and Coatings.

Polymers (Basel)

December 2024

Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Campus Ghent, B-9000 Ghent, Belgium.

The valorization of potato peel side streams for food packaging applications, especially for the substitution of current petrochemical-based oxygen barrier solutions such as EVOH, is becoming increasingly important. Therefore, potato peel-based films and coatings (on PLA) were developed containing 10-50% (/ potato peel) citric acid (CA). To determine the impact of CA concentration on the structure and physicochemical properties of cast films and coatings, ATR-FTIR spectroscopy, moisture adsorption isotherms, tensile properties, light transmittance, oxygen permeability, carbon dioxide transmission rate, and water vapor transmission rate measurements were performed.

View Article and Find Full Text PDF

A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers.

Polymers (Basel)

December 2024

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.

Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer.

View Article and Find Full Text PDF

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

This study addresses the challenge of multi-dimensional and small gas sensor data classification using a gelatin-carbon black (CB-GE) composite film sensor, achieving 91.7% accuracy in differentiating gas types (ethanol, acetone, and air). Key techniques include Principal Component Analysis (PCA) for dimensionality reduction, the Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation, and the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms for classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!