Strongly correlated multielectron bunches from interaction with quantum light.

Sci Adv

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Published: May 2024

Strongly correlated electron systems are a cornerstone of modern physics, being responsible for groundbreaking phenomena from superconducting magnets to quantum computing. In most cases, correlations in electrons arise exclusively because of Coulomb interactions. In this work, we reveal that free electrons interacting simultaneously with a light field can become highly correlated via mechanisms beyond Coulomb interactions. In the case of two electrons, the resulting Pearson correlation coefficient for the joint probability distribution of the output electron energies is enhanced by more than 13 orders of magnitude compared to that of electrons interacting with the light field in succession (one after another). These highly correlated electrons are the result of momentum and energy exchange between the participating electrons via the external quantum light field. Our findings pave the way to the creation and control of highly correlated free electrons for applications including quantum information and ultrafast imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078178PMC
http://dx.doi.org/10.1126/sciadv.adm9563DOI Listing

Publication Analysis

Top Keywords

light field
12
highly correlated
12
quantum light
8
coulomb interactions
8
free electrons
8
electrons interacting
8
electrons
7
correlated
5
correlated multielectron
4
multielectron bunches
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!