Background: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the world. AF increases the risk of stroke 5-fold, though the risk can be reduced with appropriate treatment. Therefore, early diagnosis is imperative but remains a global challenge. In low-and middle-income countries (LMICs), a lack of diagnostic equipment and under-resourced healthcare systems generate further barriers. The rapid development of digital technologies that are capable of diagnosing AF remotely and cost-effectively could prove beneficial for LMICs. However, evidence is lacking on what digital technologies exist and how they compare in regards to diagnostic accuracy. We aim to systematically review the diagnostic accuracy of all digital technologies capable of AF diagnosis.
Methods: MEDLINE, Embase and Web of Science will be searched for eligible studies. Free text terms will be combined with corresponding index terms where available and searches will not be limited by language nor time of publication. Cohort or cross-sectional studies comprising adult (≥18 years) participants will be included. Only studies that use a 12-lead ECG as the reference test (comparator) and report outcomes of sensitivity, specificity, the diagnostic odds ratio (DOR) or the positive and negative predictive value (PPV and NPV) will be included (or if they provide sufficient data to calculate these outcomes). Two reviewers will independently assess articles for inclusion, extract data using a piloted tool and assess risk of bias using the QUADAS-2 tool. The feasibility of a meta-analysis will be determined by assessing heterogeneity across the studies, grouped by index device, diagnostic threshold and setting. If a meta-analysis is feasible for any index device, pooled sensitivity and specificity will be calculated using a random effect model and presented in forest plots.
Discussion: The findings of our review will provide a comprehensive synthesis of the diagnostic accuracy of available digital technologies capable for diagnosing AF. Thus, this review will aid in the identification of which devices could be further trialed and implemented, particularly in a LMIC setting, to improve the early diagnosis of AF.
Trial Registration: Systematic review registration: PROSPERO registration number is CRD42021290542. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021290542.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078345 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301729 | PLOS |
Int J Bipolar Disord
December 2024
Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany.
Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neuro-developmental disorder that often persists into adulthood. Moreover, it is frequently accompanied by bipolar disorder (BD) as well as borderline personality disorder (BPD). It is unclear whether these disorders share underlying pathomechanisms, given that all three are characterized by alterations in affective states, either long or short-term.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering, Southeast University, Nanjing, 211189, China.
Collapsible loess soils, known for their significant volume reduction upon the wetting, pose critical challenges in the geotechnical engineering. The estimation of the wetting-induced settlement is crucial for the foundation design and the determination of the negative skin friction on the pile. In this paper, a new method is proposed to estimate the wetting induced collapse from the wetting soil-water characteristic curve (SWCC) and the index properties of the loess soils.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori, Yokohama, 226-8503, Kanagawa, Japan.
The sense of smell is fundamental for various aspects of human existence including the flavor perception, environmental awareness, and emotional impact. However, unlike other senses, it has not been digitized. Its digitalization faces challenges such as the lack of reliable odor sensing technology or the precise scent delivery through olfactory displays.
View Article and Find Full Text PDFReduced bacteria concentrations in wastewater is a key indicator of the efficacy of water resource recovery facilities (WRRFs). However, monitoring the presence of bacterial concentrations in real time at each stage of the WRRF is challenging as it requires taking and processing water samples offline. Although few studies have been proposed to predict bacterial concentrations using data-driven models, generalizing these models to unseen data from different WRRFs remains challenging.
View Article and Find Full Text PDFSci Rep
December 2024
Advanced Research Institute for Digital-Twin Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
Traditional hydraulic structures rely on manual visual inspection for apparent integrity, which is not only time-consuming and labour-intensive but also inefficient. The efficacy of deep learning models is frequently constrained by the size of available data, resulting in limited scalability and flexibility. Furthermore, the paucity of data diversity leads to a singular function of the model that cannot provide comprehensive decision support for improving maintenance measures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!