Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The success rate of spinal fusion surgery is mainly determined by the fixation strength of the spinal bone anchors. This study explores the use of an L-shaped spinal bone anchor that is intended to establish a macro-shape lock with the posterior cortical layer of the vertebral body, thereby increasing the pull-out resistance of the anchor. The performance of this L-shaped anchor was evaluated in lumbar vertebra phantoms (L1-L5) across four distinct perpendicular orientations (lateral, medial, superior, and inferior). During the pull-out experiments, the pull-out force, and the displacement of the anchor with respect to the vertebra was measured which allowed the determination of the maximal pull-out force (mean: 123 N ± 25 N) and the initial pull-out force, the initial force required to start motion of the anchor (mean: 23 N ± 16 N). Notably, the maximum pull-out force was observed when the anchor engaged the cortical bone layer. The results demonstrate the potential benefits of utilising a spinal bone anchor featuring a macro-shape lock with the cortical bone layer to increase the pull-out force. Combining the macro shape-lock fixation method with the conventional pedicle screw shows the potential to significantly enhance the fixation strength of spinal bone anchors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078376 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302996 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!