Clathrin-mediated endocytosis (CME) is an essential process of cargo uptake operating in all eukaryotes. In animals and yeast, BAR-SH3 domain proteins, endophilins and amphiphysins, function at the conclusion of CME to recruit factors for vesicle scission and uncoating. Arabidopsis thaliana contains the BAR-SH3 domain proteins SH3P1-SH3P3, but their role is poorly understood. Here, we identify SH3Ps as functional homologs of endophilin/amphiphysin. SH3P1-SH3P3 bind to discrete foci at the plasma membrane (PM), and SH3P2 recruits late to a subset of clathrin-coated pits. The SH3P2 PM recruitment pattern is nearly identical to its interactor, a putative uncoating factor, AUXILIN-LIKE1. Notably, SH3P1-SH3P3 are required for most of AUXILIN-LIKE1 recruitment to the PM. This indicates a plant-specific modification of CME, where BAR-SH3 proteins recruit auxilin-like uncoating factors rather than the uncoating phosphatases, synaptojanins. SH3P1-SH3P3 act redundantly in overall CME with the plant-specific endocytic adaptor TPLATE complex but not due to an SH3 domain in its TASH3 subunit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114195DOI Listing

Publication Analysis

Top Keywords

recruit auxilin-like
8
uncoating factors
8
clathrin-mediated endocytosis
8
bar-sh3 domain
8
domain proteins
8
uncoating
5
sh3ps recruit
4
auxilin-like vesicle
4
vesicle uncoating
4
factors clathrin-mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!