The second hyperpolarizabilities () of the stilbene molecular switch in its and forms have been calculated using quantum chemistry methods to address their third-order nonlinear optical contrasts, to assess the reliability of lower-cost DFT methods, and to make comparisons with experiments. First, the reference CCSD(T) method shows that -stilbene presents a value twice larger than its isomer (its value is 2.7 times larger). Among more cost-effective methods, reliable results are obtained at MP2 as well as with DFT, provided the CAM-B3LYP or B97X-D XCFs are employed. Supplementary DFT calculations have investigated the relationships between the accuracy of the exchange-correlation functionals, the fulfillment of Koopmans' theorem, and the delocalization error, and they demonstrated that satisfying Koopmans' theorem is not the condition for the best accuracy but that functionals with small delocalization errors are generally efficient. Using the selected CAM-B3LYP, large enhancements by about 70% (-stilbene) and 50% (-stilbene) have been evidenced when accounting for solvent effects using an implicit solvation model (IEFPCM), even for apolar solvents. Then, the frequency dispersion of the responses has been described using Bishop polynomial expansions, allowing comparisons with a broad set of experimental data. To a certain extent, no systematic agreement between the calculations and the measured values was found. On the one hand, the agreement is satisfactory for the (-;,-,) quantities, provided that the dominant vibrational contribution is taken into account. On the other hand, the agreement is poor for the (-2;,,0) and (-3;,,) quantities, while some inconsistencies between experimental values are also highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp00522h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!