Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A study on the effects of sample synthesis conditions on the particle size, structure, and magnetic properties of electron-doped cuprate superconductors of EuCeCuO (ECCO) nanoparticles has been carried out using transmission electron microscopy (TEM), X-ray diffraction (XRD) and the superconducting quantum interference device magnetometer (SQUID). The ECCO nanoparticles were prepared through the sol-gel method with various sintering and annealing temperatures. From TEM characterization, the average particle sizes are 87 nm and 103 nm for the sintering temperatures of 700 °C and 900 °C, respectively. The XRD results with structural Rietveld refinement reveal that the lattice constants and bond distance Cu-O change considerably compared to the bulk case. Reducing the particle and crystallite size to below 200 nm causes strong suppression in the superconducting state. From SQUID measurements it is found that none of the samples show superconducting behavior. An upturn in magnetic susceptibility below 10 K is observed in the sample when the crystallite size is in the range of 69 nm to 88 nm, indicating the existence of magnetism. The lower the sintering temperature of the sample synthesis, the higher the effective magnetic moment and Curie temperature. It suggests that the magnetic correlation is more developed in the smaller samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp01072h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!