Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461579PMC
http://dx.doi.org/10.1007/s00063-024-01146-8DOI Listing

Publication Analysis

Top Keywords

[treatment algorithm
4
algorithm prone
4
prone position
4
position critically
4
critically ill
4
ill patients]
4
[treatment
1
prone
1
position
1
critically
1

Similar Publications

Comparative analysis of regression algorithms for drug response prediction using GDSC dataset.

BMC Res Notes

January 2025

Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.

Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.

View Article and Find Full Text PDF

The microenvironment cell index is a novel indicator for the prognosis and therapeutic regimen selection of cancers.

J Transl Med

January 2025

Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.

Background: It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC).

Methods: The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis.

View Article and Find Full Text PDF

Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a prevalent complication among critically ill patients, constituting around 10% of intensive care unit (ICU) admissions and mortality rates ranging from 35 to 46%. Hence, early recognition and prediction of ARDS are crucial for the timely administration of targeted treatment. However, ARDS is frequently underdiagnosed or delayed, and its heterogeneity diminishes the clinical utility of ARDS biomarkers.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is a common cerebrovascular disease. Although the formation of atherosclerosis, which is closely related to oxidative stress (OS), is associated with stroke-related deaths. However, the role of OS in IS is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!