Detecting Substance Use Disorder Using Social Media Data and the Dark Web: Time- and Knowledge-Aware Study.

JMIRx Med

Department of Computer Science and Computer Engineering, Artificial Intelligence Institute, University of South Carolina, Columbia, SC, United States.

Published: May 2024

Background: Opioid and substance misuse has become a widespread problem in the United States, leading to the "opioid crisis." The relationship between substance misuse and mental health has been extensively studied, with one possible relationship being that substance misuse causes poor mental health. However, the lack of evidence on the relationship has resulted in opioids being largely inaccessible through legal means.

Objectives: This study aims to analyze social media posts related to substance use and opioids being sold through cryptomarket listings. The study aims to use state-of-the-art deep learning models to generate sentiment and emotion from social media posts to understand users' perceptions of social media. The study also aims to investigate questions such as which synthetic opioids people are optimistic, neutral, or negative about; what kind of drugs induced fear and sorrow; what kind of drugs people love or are thankful about; which drugs people think negatively about; and which opioids cause little to no sentimental reaction.

Methods: The study used the drug abuse ontology and state-of-the-art deep learning models, including knowledge-aware Bidirectional Encoder Representations From Transformers-based models, to generate sentiment and emotion from social media posts related to substance use and opioids being sold through cryptomarket listings. The study crawled cryptomarket data and extracted posts for fentanyl, fentanyl analogs, and other novel synthetic opioids. The study performed topic analysis associated with the generated sentiments and emotions to understand which topics correlate with people's responses to various drugs. Additionally, the study analyzed time-aware neural models built on these features while considering historical sentiment and emotional activity of posts related to a drug.

Results: The study found that the most effective model performed well (statistically significant, with a macro-F1-score of 82.12 and recall of 83.58) in identifying substance use disorder. The study also found that there were varying levels of sentiment and emotion associated with different synthetic opioids, with some drugs eliciting more positive or negative responses than others. The study identified topics that correlated with people's responses to various drugs, such as pain relief, addiction, and withdrawal symptoms.

Conclusions: The study provides insight into users' perceptions of synthetic opioids based on sentiment and emotion expressed in social media posts. The study's findings can be used to inform interventions and policies aimed at reducing substance misuse and addressing the opioid crisis. The study demonstrates the potential of deep learning models for analyzing social media data to gain insights into public health issues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084118PMC
http://dx.doi.org/10.2196/48519DOI Listing

Publication Analysis

Top Keywords

social media
28
substance misuse
16
media posts
16
sentiment emotion
16
synthetic opioids
16
study
13
study aims
12
deep learning
12
learning models
12
substance disorder
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!