AI Article Synopsis

  • Chikungunya is a viral disease transmitted by Aedes mosquitoes, causing symptoms like high fever and joint pain, with potential severe complications including encephalitis and chronic arthritis.* -
  • An analysis of proteomics data from CHIKV-infected patients showed changes in critical processes, particularly involving proteins linked to cholesterol metabolism and mRNA splicing, as well as significant upregulation of actin cytoskeleton proteins associated with arthritis.* -
  • The study highlights the connection between actin cytoskeletal remodeling and alterations in purine metabolism, providing insights into the mechanisms underlying arthritis development during Chikungunya infection.*

Article Abstract

Chikungunya is a zoonotic disease caused by the Chikungunya virus (CHIKV), primarily transmitted to humans through infected Aedes mosquitoes. The infection is characterized by symptoms such as high fever, musculoskeletal pain, polyarthritis, and a rash, which can lead to severe complications such as encephalitis, meningitis, and even fatalities. While many disease manifestations resemble those of other viral infections, chronic arthritis caused by CHIKV is unique, and its molecular mechanisms remain ill-defined. Proteomics data from both cellular and patient levels of CHIKV infection were curated from PubMed and screened using inclusion and exclusion criteria. Patient serum proteomics data obtained from PRIDE underwent reanalysis using Proteome Discoverer 2.2. Enrichment and protein-protein interaction network analysis were conducted on differentially expressed proteins from both serum and cellular datasets. Metabolite data from CHIKV-infected patients were further retrieved, and their protein binding partners were identified using BindingDB. The protein-metabolite interaction pathway was further developed using MetaboAnalyst. The proteomics data analysis revealed differential expression of proteins involved in critical host mechanisms, such as cholesterol metabolism and mRNA splicing, during CHIKV infection. Consistent upregulation of two actin cytoskeleton proteins, TAGLN2 and PFN1, was noted in both serum and cellular datasets, and their upregulations are associated with arthritis. Furthermore, alterations in purine metabolism were observed in the integrative proteome-metabolome analysis, correlating with cytoskeletal remodelling. Collectively, this integrative view sheds light on the involvement of actin cytoskeleton remodeling proteins and purine metabolic pathways in the development of arthritis during CHIKV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vbz.2024.0018DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
12
proteomics data
12
chikv infection
12
integrative proteome-metabolome
8
serum cellular
8
cellular datasets
8
chikv
5
unveiling actin
4
cytoskeleton role
4
role mediating
4

Similar Publications

Background: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.

Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).

View Article and Find Full Text PDF

Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.

View Article and Find Full Text PDF

Actin instability alters red blood cell mechanics and Piezo1 channel activity.

Biomech Model Mechanobiol

January 2025

CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.

The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.

View Article and Find Full Text PDF

Budding yeast cells multiply by asymmetric cell division. During this process, the cell organelles are transported by myosin motors along the actin cytoskeleton into the growing bud, while at the same time some organelles must be retained in the mother cell. The ordered partitioning of organelles depends on highly regulated binding of motor proteins to cargo membranes.

View Article and Find Full Text PDF

The initiation of embryogenesis in the kelp Saccharina latissima is accompanied by significant anisotropy in cell shape. Using monoclonal antibodies, we show that this anisotropy coincides with a spatio-temporal pattern of accumulation of alginates in the cell wall of the zygote and embryo. Alginates rich in guluronates as well as sulphated fucans show a homogeneous distribution in the embryo throughout Phase I of embryogenesis, but mannuronate alginates accumulate mainly on the sides of the zygote and embryo, disappearing as the embryo enlarges at the start of Phase II.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!