Cells rely heavily on the uptake of exogenous nutrients for survival, growth, and differentiation. Yet quantifying the uptake of small molecule nutrients at the single cell level is difficult. Here we present a new approach to studying the nutrient uptake in live single cells using Inverse Electron-Demand Diels Alder (IEDDA) chemistry. We have modified carboxyfluorescein-diacetate-succinimidyl esters (CFSE)-a quenched fluorophore that can covalently react with proteins and is only turned on in the cytosol of a cell following esterase activity-with a tetrazine. This tetrazine serves as a second quencher for the pendant fluorophore. Upon reaction with nutrients modified with an electron-rich or strained dienophile in an IEDDA reaction, this quenching group is destroyed, thereby enabling the probe to fluoresce. This has allowed us to monitor the uptake of a variety of dienophile-containing nutrients in live primary immune cell populations using flow cytometry and live-cell microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202401733DOI Listing

Publication Analysis

Top Keywords

nutrient uptake
8
uptake
5
bioorthogonal dual
4
dual fluorogenic
4
fluorogenic probe
4
probe live-cell
4
live-cell monitoring
4
monitoring nutrient
4
uptake mammalian
4
mammalian cells
4

Similar Publications

An RNase III-processed sRNA coordinates sialic acid metabolism of during gut colonization.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.

Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.

View Article and Find Full Text PDF

Metabolic reprogramming of tumor cells dynamically reshapes the distribution of nutrients and signals in the tumor microenvironment (TME), affecting intercellular interactions and resulting in metabolic immune suppression. Increased glucose uptake and metabolism are characteristic of many tumors. Meanwhile, the progression of colorectal carcinoma (CRC) relies on lipid metabolism.

View Article and Find Full Text PDF

The interaction of nutrient uptake with biotic and abiotic stresses in plants.

J Integr Plant Biol

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency.

View Article and Find Full Text PDF

Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules.

View Article and Find Full Text PDF

Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!