Two new nickel(II) complexes, namely Ni(L) (1) and Ni(L)·CHCl(2) were obtained by reacting nickel(II) acetate tetrahydrate with the benzothiadiazole Schiff base ligands HL = 2-[4-(2,1,3-benzothiadiazole)imino]methyl-phenol or HL = 2-[(2,1,3-benzothiadiazol-4-ylimino)methyl]-6-methoxyphenol in the presence of EtN. The tridentate NNO chelate ligands induce a distorted octahedral environment around the nickel(II) ions. Single crystal X-ray diffraction analysis reveals elongated Ni-N bonds with the nitrogen atom of the benzothiadiazole ring in both complexes. Intermolecular hydrogen bonds and π-π stacking interactions create two-dimensional and three-dimensional supramolecular arrays, respectively, for complexes 1 and 2. Magnetic susceptibility and high-field electron paramagnetic resonance measurements show the presence of significant magnetic anisotropy, with an axial distortion parameter of -8--10 cm.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt01143kDOI Listing

Publication Analysis

Top Keywords

nickelii complexes
8
six-coordinated nickelii
4
complexes
4
complexes benzothiadiazole
4
benzothiadiazole schiff-base
4
schiff-base ligands
4
ligands synthesis
4
synthesis crystal
4
crystal structure
4
structure magnetic
4

Similar Publications

Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis.

View Article and Find Full Text PDF

This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2‑phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed.

View Article and Find Full Text PDF

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Amino-quinolines are potential candidates that may provide some insight into the current chemotherapeutic research due to their demonstrated anti-cancer activity. This led us to synthesize and explore a new amino-azo-quinoline ligand H2L 1 and its square planar nickel(II) complexes [Ni(HL)(OAc)], 2 and [Ni(HL)Cl], 3 and the structures were determined by SCXRD. Theoretical investigation of redox orbitals of the complexes discloses that the reduction process is due to ligand reduction whereas both metal and ligand are contributing towards oxidation.

View Article and Find Full Text PDF

Synthesis of Unprotected Racemic Tryptophan Derivatives Using Gramine via Nickel(II) Complex.

J Org Chem

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, P. R. China.

A chemical method for the preparation of nonprotected tryptophan via nickel(II) complexes under simple operating conditions was established. The carefully designed nickel(II) glycinates are inexpensive and can be quantitatively recovered releasing the target tryptophans in high yield. The method has a wide range of synthesis generality, allowing the preparation of various substituted tryptophans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!