Zinc oxide (ZnO) and graphene oxide (GO) nanoparticles, silver/zinc zeolite (Ag/Zn-Ze), and graphene oxide-silver (GO-Ag) nanocomposites were synthesized and characterized with X-ray powder Diffraction, Field Emission Scanning Electron Microscope and Fourier Transform-Infrared Spectroscopy. The antibacterial efficacy of these nanoparticles was evaluated against . by shake flask method and plate culture method for different concentrations. For 10 cells/mL initial bacterial concentration, minimum inhibitory concentration (MIC) were <160, <320, <320, and >1280 μg/mL, and antibacterial concentration at which 50% cells are inhibited (IC) were 47, 90, 78, and 250 μg/mL for Ag/Zn-Ze, GO, GO-Ag, and ZnO, respectively. Therefore, the shake flask method showed that for all nanoparticle concentrations, Ag/Zn-Ze, and GO-Ag exhibited greater inhibition efficacy, which was also highly dependent on initial bacterial concentration. However, in case of the plate culture method, similar range of inhibition capacity was found for Ag/Zn-Ze, GO-Ag, and ZnO, whereas GO showed lower potency to inhibit . In addition, GO-Ag nanocomposite exhibited more efficacy than Ag/Zn-Ze when the antibacterial surface was prepared with those. However, Ag/Zn-Ze showed no toxicity on Vero cells, whereas GO-Ag exhibited severe toxicity at higher concentrations. This study establishes GO-Ag and Ag/Zn-Ze as potent antimicrobial agents; however, their application dosage should carefully be chosen based on cytotoxic effects of GO-Ag in case of any possible physiological interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989569PMC
http://dx.doi.org/10.1002/ansa.202100041DOI Listing

Publication Analysis

Top Keywords

synthesis characterization
4
characterization comparative
4
comparative assessment
4
assessment antimicrobial
4
antimicrobial properties
4
properties cytotoxicity
4
cytotoxicity graphene-
4
graphene- silver-
4
silver- zinc-based
4
zinc-based nanomaterials
4

Similar Publications

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Half-Metallic Antiferromagnetic 2D Nonlayered CrSe Nanosheets.

ACS Nano

December 2024

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!