Facile Synthesis of Silver Nanoparticles From Sustainable Sargassum sp. Seaweed Material and Its Anti-inflammatory Application.

Cureus

Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND.

Published: April 2024

AI Article Synopsis

  • Scientists are exploring sustainable methods to produce nanoparticles using marine resources, particularly focusing on seaweed extracts for synthesizing silver nanoparticles (Ag NPs).
  • Seaweed extracts contain bioactive substances that effectively reduce silver ions to form Ag NPs, which are found to enhance the anti-inflammatory properties of the extracts.
  • The study involved mixing seaweed with distilled water, adding silver nitrate, and using centrifugation and vacuum drying, resulting in a color change that confirmed the successful synthesis of Ag NPs.

Article Abstract

Background Sustainable and environmentally friendly methods of producing nanoparticles are now being investigated by scientists. Because there are so many marine renewable resources, scientists are focusing their attention on studying seagrass, seaweed, mangroves, marine macroalgae, and microalgae. An exciting new frontier in research involves the synthesis of nanoparticles using extracts from seaweed. Seaweed extracts are utilized to synthesize silver nanoparticles (Ag NPs), which serve as both reducing and stabilizing agents. Seaweed extracts possess bioactive substances like proteins, polysaccharides, and polyphenols that enable them to effectively convert silver (Ag) ions into Ag NPs. Ag NPs derived from  seaweed have played an essential role in improving the anti-inflammatory properties of seaweed extracts. This study aimed to investigate the biosynthesis of Ag NPs from  seaweed and evaluate their anti-inflammatory properties. Materials and methods About 50 g of seaweed samples were mixed with 100 mL of distilled water and stirred for 24 hours. Additionally, 1.2 g of silver nitrate (0.120 M) was dissolved in 60 mL of distilled water to make a silver (Ag) solution. A 60 mL solution of silver nitrate (AgNO) was mixed with a 40 mL solution of seaweed extract in water, and the mixture was stirred with a stirrer for 24 hours. A UV spectrophotometer was used to regularly monitor the reduction of Ag ions in the solution. Ag NPs were purified using a sequence of centrifugation steps with a duration of 10 minutes at a speed of 2500 revolutions per minute (rpm). To remove moisture from the water-suspended nanoparticles, they were vacuum-dried for 24 hours.  Results The synthesis of Ag NPs from seaweed extract resulted in a noticeable change in the color of the mixture, which went from pale to brown. The alteration in color signifies the reduction of AgNO to Ag ions, facilitating the creation of Ag NPs. X-ray diffraction (XRD) measurement verified the remarkable crystallinity of the synthesized Ag NPs. Field emission scanning electron microscopy (FESEM) images indicated a spherical, homogeneous structure. The Ag NPs derived from seaweed exhibited significant anti-inflammatory characteristics. Conclusion Utilizing sp. seaweed in the biological synthesis of Ag NPs shows promise to develop nanomaterials that can exhibit anti-inflammatory effects. This technique has benefits, such as being environmentally friendly and cost-efficient. Additional research in this area is essential for effectively exploiting the potential of Ag NPs in anti-inflammatory activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074817PMC
http://dx.doi.org/10.7759/cureus.57754DOI Listing

Publication Analysis

Top Keywords

seaweed
12
seaweed extracts
12
nps
9
silver nanoparticles
8
environmentally friendly
8
nps derived
8
anti-inflammatory properties
8
distilled water
8
silver nitrate
8
seaweed extract
8

Similar Publications

Papaya ( L.) is a climacteric fruit which lose quality and shelf life quickly due to physiological decay and microbial infection after harvest. The study was conducted to evaluate newly applied clybio formulation (0.

View Article and Find Full Text PDF

Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. () is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet.

View Article and Find Full Text PDF

, a special economic aquaculture species in China, is valued highly for its medicinal and nutritional benefits. However, the muscle of farmed exhibits a strong off-flavor, resulting in poor flavor quality. To enhance the flavor quality of the meat, this study examined the volatile compounds in muscle by establishing identification methods for these volatile odor compounds and comparing the differences between the two aquaculture modes.

View Article and Find Full Text PDF

Single use plastics are a leading source of microplastics that have been detected along the food chain. This study evaluated the potential of starch (ST) and carrageenan (CRG) in packaging film formulation. CRG isolated from the seaweed (SW) was blended with starch and cast to obtain films whose moisture content (MC), total soluble matter (TSM), degree of solubility (DS), water vapor permeability (WVP), opacity (O), contact angles (CA), moisture absorption (MA), and percent elongation (PE) were evaluated.

View Article and Find Full Text PDF

This study investigates the effects of three brown seaweed species (, , and ), their pre-processing treatments, and incorporation percentages on the physical and sensory properties of crackers. Significant ( ≤ 0.001) two-way and three-way interactions were observed for moisture content, with seaweed addition generally resulting in drier crackers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!