Prospective risks from climate change impacts in ocean and coastal systems are urging the implementation of nature-based solutions (NBS). These are climate-resilient strategies to maintain biodiversity and the delivery of ecosystem services, contributing to the adaptation of social-ecological systems and the mitigation of climate-related impacts. However, the effectiveness of measures like marine restoration or conservation is not exempt from the impacts of climate change, and the degree to which they can sustain biodiversity and ecosystem services remains unknown. Such uncertainty, together with the slow pace of implementation, causes decision-makers and societies to demand a better understanding of NBS effects. To address this gap, in this study, we use the risk mitigation capacity of marine NBS as a proxy for their effectiveness while providing a toolset for the implementation of the method. The method considers environmental data and relies on expert elicitation, allowing us to go beyond current practice to evaluate the effectiveness of NBS in reducing habitat or species risks under different future socio-political and climate-change scenarios. As a result, we present a ready-to-use tool, and supporting materials, for the implementation of the Climate Risk Assessment method and an illustrative example considering the application of the NBS "nature-inclusive harvesting" in two shellfisheries. The method works as a rapid assessment that guarantees comparability across sites and species due to its low data or resource demand, so it can be widely incorporated to adaptation policies across the marine realm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17296 | DOI Listing |
Water Res X
January 2025
Department of Systemic Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany.
Due to accelerating climate change and the need for new development to accommodate population growth, adaptation of urban drainage systems has become a pressing issue in cities. Questions arise whether decentralised urban drainage systems are a better alternative to centralised systems, and whether Nature Based Solutions' (NBS) multifunctionality also brings economic benefits. This research aims to develop spatio-economic scenarios to support cities in increasing their resilience to urban flooding with NBS.
View Article and Find Full Text PDFThe evolution of wildlife disease management and surveillance, as documented in the World Organisation for Animal Health's Scientific and Technical Review, reflects a deepening understanding of the links between wildlife health, ecosystem integrity and human well-being. Early work, beginning with the World Assembly of Delegates in 1954, primarily focused on diseases like rabies. This focus expanded over time to include broader concerns such as the impacts of climate change, habitat loss and increased human-wildlife interactions on wildlife health.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Centre International de Recherche sur l'Environnement et le Développement (CIRED), 45bis Avenue de la Belle Gabrielle, 94130, Nogent-sur-Marne, France.
The application of nature-based solutions to agriculture is promising because it allows the sustainable management of ecosystems and the reconciling of human well-being with the benefits of biodiversity. However, scientists lack robust economic arguments and concepts in the area of nature-based solutions that are well aligned with the expectations of the agricultural sector. This study addresses this gap by developing an interdisciplinary economic framework that integrates nature-based solutions and allows for an assessment of their efficient use.
View Article and Find Full Text PDFWater Res
December 2024
CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
Green walls for greywater treatment have emerged as a solution to increase green spaces in densely urbanized areas while providing treated greywater for reuse. Over the past decade, numerous studies have focused on optimizing these systems, though most address specific operational conditions and evaluate a limited set of performance parameters. This review synthesizes the existing literature using a meta-analysis to identify key operational factors and treatment performance metrics.
View Article and Find Full Text PDFJ Environ Manage
December 2024
CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain.
Adequate revegetation of abandoned farmland acts as a defence against desertification and soil loss, and can help remove carbon dioxide in the atmosphere, thereby playing an important role in regulating regional climate change. Legume, a nitrogen-fixation species, which could effectively improve vegetation coverage to control soil erosion, was widely used for revegetation. However, the dynamics of soil and plant development after legume introduction on abandoned farmland remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!