The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC: 2.26 μg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 μg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC value of 45.94 μg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076632 | PMC |
http://dx.doi.org/10.1038/s41598-024-60694-3 | DOI Listing |
Gels
December 2024
Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., Building 22, Tver 170026, Russia.
In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador.
The increasing prevalence of multidrug-resistant (MDR) pathogens, persistent biofilms, oxidative stress, and cancerous cell proliferation poses significant challenges in healthcare and environmental settings, highlighting the urgent need for innovative and sustainable therapeutic solutions. The exploration of nanotechnology, particularly the use of green-synthesized nanoparticles, offers a promising avenue to address these complex biological challenges due to their multifunctional properties and biocompatibility. Utilizing a green synthesis approach, Mf-AgONPs were synthesized and characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy coupled with scanning electron microscopy (EDS-SEM), UV-Vis spectroscopy, and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38655, United States.
-GalNAc glycans on glycoproteins with eight different core structures sharing a common α-glycosidic linkage (-GalNAc-α-Ser/Thr) are critical in various physiological and pathological processes. Among the eight -GalNAc glycan cores, core 2 characterized by a GlcNAcβ1-6(Galβ1-3)GalNAc structural motif plays a significant role in regulating diverse biological processes, such as immune response modulation, adhesive properties of selectins, and gastrointestinal tract protection. However, the large-quantity synthesis of core 2 containing glyco-amino acids for downstream solid-phase peptide synthesis is challenging.
View Article and Find Full Text PDFAdv Mater
December 2024
Experimental Mechanics Laboratory, Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
As personalized medicine rapidly evolves, there is a critical demand for advanced biocompatible materials surpassing current additive manufacturing capabilities. This study presents a novel printable bioresin engineered with tunable mechanical, thermal, and biocompatibility properties through strategic molecular modifications. The study introduces a new bioresin comprising methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and a photoinitiator, which is further enhanced by incorporating high molecular weight polymethyl methacrylate (PMMA) to improve biostability and mechanical performance.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
The present study investigated the catalysis of Lupeol-loaded chitosan nanoparticles infused with NiAgO nanoparticles to create a NiAgO/Lup@CS nanocomposite. Recent advances in nanomaterials with unique architectures and functionalities have successfully treated contaminated soil and industrial wastewaters. Consequently, a lupeol@chitosan nanoparticle loaded with NiAgO was created, and its catalytic effectiveness in degrading industrial dye pollution was examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!