Sessile water droplet evaporation in varied gravity and electric fields has been experimentally studied. Specifically, the influences of gravity and electric fields are investigated in the context of the heat flux distribution beneath the droplets, as well as the droplet mechanics and resulting shapes. Experimental testing was carried out during a European Space Agency (ESA) Parabolic Flight Campaign (PFC 66). The droplets tested evaporated with a pinned contact line, a single wettability condition, and varied droplet volume and substrate heat flux. The peak heat transfer was located at the contact line for all cases. The peak heat flux, average heat flux, and droplet evaporation rate were shown to vary strongly with gravity, with higher values noted for hypergravity conditions and lower values in microgravity conditions. The droplet thermal inertia was shown to play a significant role, with larger droplets taking more time to reach thermal equilibrium during the parabolic testing period. No significant impact of the electric field on the droplet evaporation was noted for these test conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076615 | PMC |
http://dx.doi.org/10.1038/s41526-024-00396-2 | DOI Listing |
J Phys Chem B
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.
View Article and Find Full Text PDFSoft Matter
January 2025
Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.
View Article and Find Full Text PDFLangmuir
January 2025
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China.
Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFACS Nano
January 2025
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
With their ability to self-assemble spontaneously into well-defined nanoscale morphologies, block copolymer (BCP) thin films are a versatile platform to fabricate functional nanomaterials. An important challenge to wider deployment of BCPs in nanofabrication is combining precise control over the nanoscale domain orientation in BCP assemblies with scalable deposition techniques that are applicable to large-area, curved, and flexible substrates. Here, we show that spray-deposited smooth films of a nominally disordered BCP exhibit latent orientations, which can be prescriptively selected by controlling solvent evaporation during spray casting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!