c-di-AMP is an essential and widespread nucleotide second messenger in bacterial signaling. For most c-di-AMP synthesizing organisms, c-di-AMP homeostasis and the molecular mechanisms pertaining to its signal transduction are of great concern. Here we show that c-di-AMP binds the N-acetylglucosamine (GlcNAc)-sensing regulator DasR, indicating a direct link between c-di-AMP and GlcNAc signaling. Beyond its foundational role in cell-surface structure, GlcNAc is attractive as a major nutrient and messenger molecule regulating multiple cellular processes from bacteria to humans. We show that increased c-di-AMP levels allosterically activate DasR as a master repressor of GlcNAc utilization, causing the shutdown of the DasR-mediated GlcNAc signaling cascade and leading to a consistent enhancement in the developmental transition and antibiotic production in Saccharopolyspora erythraea. The expression of disA, encoding diadenylate cyclase, is directly repressed by the regulator DasR in response to GlcNAc signaling, thus forming a self-sustaining transcriptional feedback loop for c-di-AMP synthesis. These findings shed light on the allosteric regulation by c-di-AMP, which appears to play a prominent role in global signal integration and c-di-AMP homeostasis in bacteria and is likely widespread in streptomycetes that produce c-di-AMP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076491 | PMC |
http://dx.doi.org/10.1038/s41467-024-48063-0 | DOI Listing |
Microb Pathog
December 2024
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China. Electronic address:
A striking characteristic of the human fungal pathogen Candida albicans is its ability to switch between budding yeast morphology and the filamentous form, facilitating its adaptation to changing host environments. The filamentous growth of C. albicans is mediated by various environmental factors, such as carbon dioxide (CO), N-acetylglucosamine (GlcNAc), serum, and high temperature.
View Article and Find Full Text PDFTumori
December 2024
Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), one of the protein post-translational modifications, is the process of adding O-linked-β-D-N-acetylglucosaminylation (O-GlcNAc) to serine and threonine residues of proteins. O-GlcNAcylation regulates various fundamental cell biological processes, including gene transcription, signal transduction, and cellular metabolism. The role of dysregulated O-GlcNAcylation in tumorigenesis has been recognized, but its role in cancer therapy tolerance has not been elucidated.
View Article and Find Full Text PDFACS Bio Med Chem Au
December 2024
Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
Glycan sulfation is a widespread postglycosylation modification crucial for modulating biological functions including cellular adhesion, signaling, and bacterial colonization. 6-Sulfo-β-GlcNAcases are a class of enzyme that alters sulfation patterns. Such changes in sulfation patterns are linked to diseases such as bowel inflammation, colitis, and cancer.
View Article and Find Full Text PDFFASEB J
December 2024
Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
Vascular calcification (VC), associated with high cardiovascular mortality in patients with chronic kidney disease (CKD), involves osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). O-GlcNAcylation, a dynamic post-translational modification, is closely linked to cardiovascular diseases, including VC. However, the exact role and molecular mechanism of O-GlcNAc signaling in abnormal mineral metabolism-induced VC remain unclear.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Sensing of peptidoglycan fragments is essential for inducing downstream signaling in both mammalian and fungal systems. The hexokinases NagK and Hxk1 are crucial enzymes for the phosphorylation of peptidoglycan molecules in order to activate specific cellular responses; however, biochemical characterization of their enzymatic specificity and efficiency has yet to be investigated in depth. Here a mass spectrometry enzymatic screen was implemented to assess substrate specificity, and an ATP coupled assay provided the quantitative kinetic profiles of these two homologous, eukaryotic enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!