Curcumin is a polyphenol extracted from Curcuma longa's roots. Low doses of curcumin are related to anti-inflammatory, antioxidant, and neuroprotective effects, while high doses are used for their lethality. This diversity of behaviors allows us to understand curcumin as a compound with hormetic action. Due to its strongly hydrophobic character, curcumin is often solubilized in organic compounds. In this way, we have recently reported the undesirable and occasionally irreversible effects of alcohol and DMSO on the viability of primary Schwann cell cultures. In this scenario, the use of nanoparticles as delivery systems has become a successful alternative strategy for these compounds. In the present work, we describe the structure of Polydopamine (PDA) nanoparticles, loaded with a low dose of curcumin (Curc-PDA) without the use of additional organic solvents. We analyzed the curcumin released, and we found two different forms of curcumin. Small increased cell viability and proliferation were observed in endoneurial fibroblast and Schwann cell primary cultures when Curc-PDA was steadily supplied for 5 days. The increased bioavailability of this natural compound and the impact on cells in culture not only confirm the properties of curcumin at very low doses but also provide a glimpse of a possible therapeutic alternative for PNS conditions in which SCs are involved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076434 | PMC |
http://dx.doi.org/10.1186/s11671-024-04023-7 | DOI Listing |
Clin Transl Med
January 2025
State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China.
PLoS One
January 2025
The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
Peripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia.
The brain is a lipid-rich organ, mainly due to the very high lipid content of myelin, but in addition to this, all the neuronal cell membranes, of which there are over 80 billion in the human brain [...
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
As the primary glial cells in the peripheral nervous system (PNS), Schwann cells (SCs) have been proven to influence the behavior of cancer cells profoundly and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Indeed, the tumor microenvironment (TME) is a critical factor that can significantly limit the efficacy of immunotherapeutic approaches. The TME promotes tumor progression in part by reshaping an immunosuppressive state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!