Introduction: Chest radiograph and computed tomography (CT) scans can accidentally reveal pulmonary nodules. Malignant and benign pulmonary nodules can be difficult to distinguish without specific imaging features, such as calcification, necrosis, and contrast enhancement. However, these lesions may exhibit different image texture characteristics which cannot be assessed visually. Thus, a computer-assisted quantitative method like histogram analysis (HA) of Hounsfield unit (HU) values can improve diagnostic accuracy, reducing the need for invasive biopsy.

Methods: In this exploratory control study, nonenhanced chest CT images of 20 patients with benign (10) and cancerous (10) lesion were selected retrospectively. The appearances of benign and malignant lesions were very similar in chest CT images, and only pathology report was used to discriminate them. Free hand region of interest (ROI) was inserted inside the lesion for all slices of each lesion. Mean, minimum, maximum, and standard deviations of HU values were recorded and used to make HA.

Results: HA showed that the most malignant lesions have a mean HU value between 30 and 50, a maximum HU less than 150, and a minimum HU between -30 and 20. Lesions outside these ranges were mostly benign.

Conclusion: Quantitative CT analysis may differentiate malignant from benign lesions without specific malignancy patterns on unenhanced chest CT image.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076304PMC
http://dx.doi.org/10.1111/crj.13759DOI Listing

Publication Analysis

Top Keywords

quantitative analysis
8
unenhanced chest
8
computed tomography
8
pulmonary nodules
8
malignant benign
8
chest images
8
malignant lesions
8
lesions
6
chest
5
analysis lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!