Despite the success of Poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers Euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory dsRNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi resistant ovarian tumor growth in vivo, and promotes anti-tumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543919PMC
http://dx.doi.org/10.1158/1535-7163.MCT-23-0613DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
ehmt parp
16
parp inhibition
16
tumor growth
12
combinatory ehmt
8
immune signaling
8
transposable elements
8
activity tumor
8
tumor microenvironment
8
microenvironment patient-derived
8

Similar Publications

Despite recent advances, improvements to long-term survival in metastatic carcinomas, such as pancreatic or ovarian cancer, remain limited. Current therapies suppress growth-promoting biochemical signals, ablate cells expressing tumor-associated antigens, or promote adaptive immunity to tumor neoantigens. However, these approaches are limited by toxicity to normal cells using the same signaling pathways or expressing the same antigens, or by the low frequency of neoantigens in most carcinomas.

View Article and Find Full Text PDF

Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy is the tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited.

View Article and Find Full Text PDF

Objectives: , which is primarily recognized for determining blood types, shows variable expression patterns in different tissues and cancer types. This study investigated the relationship between gene expression and cancer, and assessed its potential impact on patient survival.

Methods: Utilizing the GEPIA database, we analyzed expression in normal and tumor tissues across various cancer types using online tools for comprehensive evaluation.

View Article and Find Full Text PDF

Drug repurposing has potential to improve outcomes for high-grade serous ovarian cancer (HGSOC). Repurposing drugs with PARP family binding activity may produce cytotoxic effects through the multiple mechanisms of PARP including DNA repair, cell-cycle regulation, and apoptosis. The aim of this study was to determine existing drugs that have PARP family binding activity and can be repurposed for treatment of HGSOC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!