The South Asia International Center of Excellence for Malaria Research, an NIH-funded collaborative program, investigated the epidemiology of malaria in the Indian state of Goa through health facility-based data collected from the Goa Medical College and Hospital (GMC), the state's largest tertiary healthcare facility, between 2012 and 2021. Our study investigated region-specific spatial and temporal patterns of malaria transmission in Goa and the factors driving such patterns. Over the past decade, the number of malaria cases, inpatients, and deaths at the GMC decreased significantly after a peak in 2014-2015. However, the proportion of severe malaria cases increased over the study period. Also, a trend of decreasing average parasitemia and increasing average gametocyte density suggests a shift toward submicroscopic infections and an increase in transmission commitment characteristic of low-transmission regions. Although transmission occurred throughout the year, 75% of the cases occurred between June and December, overlapping with the monsoon (June-October), which featured rainfall above yearly average, minimal diurnal temperature variation, and high relative humidity. Sociodemographic factors also had a significant association with malaria cases, with cases being more frequent in the 15-50-year-old age group, men, construction workers, and people living in urban areas within the GMC catchment region. Our environmental model of malaria transmission projects almost negligible transmission at the beginning of 2025 (annual parasitic index: 0.0095, 95% CI: 0.0075-0.0114) if the current control measures continue undisrupted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229636PMC
http://dx.doi.org/10.4269/ajtmh.23-0828DOI Listing

Publication Analysis

Top Keywords

malaria transmission
12
malaria cases
12
malaria
9
transmission goa
8
indian state
8
transmission
6
cases
5
descriptive hospital-based
4
hospital-based 10-year
4
10-year study
4

Similar Publications

Background: Malaria remains a threat in sub-Saharan Africa, particularly in Côte d'Ivoire, where it is endemic and represents the leading cause of hospital consultations, morbidity and mortality. The strong climatic variations that exist between coastal and savannah areas of Côte d'Ivoire suggest that vector control interventions should be scheduled according to the eco-epidemiological diversity. This study evaluates bioecological parameters of vectors and malaria transmission in two health districts, one coastal and one central of Côte d'Ivoire.

View Article and Find Full Text PDF

Analysis of Severe and Relapse Risks of Imported Malaria in Five Provinces of China.

Am J Trop Med Hyg

December 2024

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.

Although China has achieved malaria elimination certification, the risk of malaria transmission reintroduction due to imported malaria remains. We analyzed data on imported malaria cases collected from January 1, 2014 to December 31, 2021, using multivariable logistic regression analysis to identify the factors associated with severe and relapsing malaria. The odds of severe malaria were around 4-fold greater for patients who were initially diagnosed with a nonmalarial illness than for patients initially diagnosed with malaria.

View Article and Find Full Text PDF

The epidemiological behavior of Plasmodium vivax malaria occurs across spatial scales including within-host, population, and metapopulation levels. On the within-host scale, P. vivax sporozoites inoculated in a host may form latent hypnozoites, the activation of which drives secondary infections and accounts for a large proportion of P.

View Article and Find Full Text PDF

Objectives: The number of mosquito bites a person receives determines the risk of acquiring malaria and the likelihood of transmitting infections to mosquitoes. We assessed heterogeneity in biting and associated factors in two settings in Uganda with different endemicity.

Methods: parasites in blood-fed indoor caught mosquitoes were quantified using qPCR targeting the Pf18S rRNA gene.

View Article and Find Full Text PDF

Background: The high burden of malaria in Africa is largely due to the presence of competent and adapted Anopheles vector species. With invasive Anopheles stephensi implicated in malaria outbreaks in Africa, understanding the genomic basis of vector-parasite compatibility is essential for assessing the risk of future outbreaks due to this mosquito. Vector compatibility with P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!