Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101070 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1012189 | DOI Listing |
PLoS Pathog
May 2024
Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America.
Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K.
View Article and Find Full Text PDFISME J
February 2015
Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
Five distinct cryptic lineages (clades I-V) have recently been recognized in the Escherichia genus. The five clades encompass strains that are phenotypically and taxonomically indistinguishable from Escherichia coli sensu stricto; however, scant data are available on their ecology, virulence and pathogenic properties. In this study 20 cryptic E.
View Article and Find Full Text PDFPLoS One
August 2014
Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C.
View Article and Find Full Text PDFPLoS One
September 2012
INRA, UMR 1313 GABI, F-78350 Jouy-en-Josas, France.
Background: The Senepol cattle breed (SEN) was created in the early XX(th) century from a presumed cross between a European (EUT) breed (Red Poll) and a West African taurine (AFT) breed (N'Dama). Well adapted to tropical conditions, it is also believed trypanotolerant according to its putative AFT ancestry. However, such origins needed to be verified to define relevant husbandry practices and the genetic background underlying such adaptation needed to be characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!