Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide, with apolipoprotein Eε4 (APOEε4) being the strongest genetic risk factor. Current clinical diagnostic imaging focuses on amyloid and tau; however, new methods are needed for earlier detection.

Methods: PET imaging was used to assess metabolism-perfusion in both sexes of aging C57BL/6J, and hAPOE mice, and were verified by transcriptomics, and immunopathology.

Results: All hAPOE strains showed AD phenotype progression by 8 months, with females exhibiting the regional changes, which correlated with GO-term enrichments for glucose metabolism, perfusion, and immunity. Uncoupling analysis revealed APOEε4/ε4 exhibited significant Type-1 uncoupling (↓ glucose uptake, ↑ perfusion) at 8 and 12 months, while APOEε3/ε4 demonstrated Type-2 uncoupling (↑ glucose uptake, ↓ perfusion), while immunopathology confirmed cell specific contributions.

Discussion: This work highlights APOEε4 status in AD progression manifests as neurovascular uncoupling driven by immunological activation, and may serve as an early diagnostic biomarker.

Highlights: We developed a novel analytical method to analyze PET imaging of F-FDG and Cu-PTSM data in both sexes of aging C57BL/6J, and hAPOEε3/ε3, hAPOEε4/ε4, and hAPOEε3/ε4 mice to assess metabolism-perfusion profiles termed neurovascular uncoupling. This analysis revealed APOEε4/ε4 exhibited significant Type-1 uncoupling (decreased glucose uptake, increased perfusion) at 8 and 12 months, while APOEε3/ε4 demonstrated significant Type-2 uncoupling (increased glucose uptake, decreased perfusion) by 8 months which aligns with immunopathology and transcriptomic signatures. This work highlights that there may be different mechanisms underlying age related changes in APOEε4/ε4 compared with APOEε3/ε4. We predict that these changes may be driven by immunological activation and response, and may serve as an early diagnostic biomarker.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247674PMC
http://dx.doi.org/10.1002/alz.13842DOI Listing

Publication Analysis

Top Keywords

glucose uptake
16
neurovascular uncoupling
12
uncoupling
8
pet imaging
8
assess metabolism-perfusion
8
sexes aging
8
aging c57bl/6j
8
uncoupling analysis
8
analysis revealed
8
revealed apoeε4/ε4
8

Similar Publications

Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.

View Article and Find Full Text PDF

Background/objectives: Intrahepatic cholangiocarcinoma (iCCA) is a malignant liver tumor with a rising global incidence and poor prognosis, largely due to late-stage diagnosis and limited effective treatment options. Standard chemotherapy regimens, including cisplatin and gemcitabine, often fail because of the development of multidrug resistance (MDR), leaving patients with few alternative therapies. Doxycycline, a tetracycline antibiotic, has demonstrated antitumor effects across various cancers, influencing cancer cell viability, apoptosis, and stemness.

View Article and Find Full Text PDF

Role of Abscisic Acid in the Whole-Body Regulation of Glucose Uptake and Metabolism.

Nutrients

December 2024

Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy.

Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome.

View Article and Find Full Text PDF

Adipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health.

View Article and Find Full Text PDF

Bone-brain communication mediates the amelioration of Polgonatum cyrtonema Hua polysaccharide on fatigue in chronic sleep-deprived mice.

Int J Biol Macromol

January 2025

Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China. Electronic address:

This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!