Near-Infrared (NIR) phosphorescence at room temperature is challenging to achieve for organic molecules due to negligible spin-orbit coupling and a low energy gap leading to fast non-radiative transitions. Here, we show a supramolecular host-guest strategy to harvest the energy from the low-lying triplet state of C nanographene tetraimide 1. H NMR and X-ray analysis confirmed the 1 : 2 stoichiometric binding of a Pt(II) porphyrin on the two π-surfaces of 1. While the free 1 does not show emission in the NIR, the host-guest complex solution shows NIR phosphorescence at 77 K. Further, between 860-1100 nm, room temperature NIR phosphorescence (λ=900 nm, τ=142 μs) was observed for a solid-state sample drop-casted from a preformed complex in solution. Theoretical calculations reveal a non-zero spin-orbit coupling between isoenergetic S and T of π-stacked [1 ⋅ Pt(II) porphyrin] complex. External heavy-atom-induced spin-orbit coupling along with rigidification and protection from oxygen in the solid-state promotes both the intersystem crossing from the first excited singlet state into the triplet manifold and the NIR phosphorescence from the lowest triplet state of 1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202406353DOI Listing

Publication Analysis

Top Keywords

nir phosphorescence
16
spin-orbit coupling
12
nanographene tetraimide
8
room temperature
8
triplet state
8
complex solution
8
phosphorescence
5
nir
5
room-temperature near-infrared
4
near-infrared phosphorescence
4

Similar Publications

Heterochiral Self-Discrimination Driven Dimerization of Polynuclear Gold(I)-Sulfido Complexes with Enhanced Phosphorescence.

Angew Chem Int Ed Engl

December 2024

Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China.

Article Synopsis
  • Researchers have created decanuclear chiral gold(I) sulfido clusters (S-Au and R-Au) using specialized SDP ligands.
  • Mixing these chiral clusters in a 1:1 ratio yields an achiral heterodimer icosanuclear meso-cluster (meso-Au), which exhibits intense near-infrared luminescence with a peak at around 750 nm.
  • The study highlights the significant increase in photoluminescence quantum yield for meso-Au (25%) compared to the chiral clusters (8%), and shows that the clustering process is influenced by solvent polarity and diphosphine ligand configuration, aiding the understanding of self-sorting in chiral assemblies.
View Article and Find Full Text PDF

Tunable Nano-Supramolecules Based on Cucurbiturils for Near-Infrared Phosphorescence Imaging.

Nano Lett

December 2024

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

Nano-supramolecules based on artificial macrocycles can not only regulate assembly morphology but also boost phosphorescence resonance energy transfer (PRET). Herein, a water-soluble phosphorescence supramolecule was constructed from the hyaluronic acid-modified bromophenylpyridinium (HAPY), cucurbit[]uril (CB[], = 7/8), and energy acceptor phenyl-bridged phenothiazine derivatives, displaying efficient PRET and achieving near-infrared (NIR) phosphorescence by macrocyclic CB[] and the assembly confinements. As compared with weak phosphorescent nanofibers of HAPY/CB[7], the spherical nanoparticles of HAPY/CB[8] not only gave strong green phosphorescence with extended lifetime to 1.

View Article and Find Full Text PDF

Environmentally friendly natural polymer-based room temperature phosphorescence (RTP) materials exhibit promising applications in anti-counterfeiting and information encryption. However, the construction of natural polymer-based RTP materials with multicolor long afterglow and even persistent near-infrared (NIR) luminescence remains a tough challenge. Here, starch (S)-based ultralong RTP materials with wide color-tunability, persistent NIR luminescence are conveniently prepared through Förster resonance energy transfer (FRET) strategies.

View Article and Find Full Text PDF

Single-atom "surgery" on chiral all-dialkynyl-protected superatomic silver nanoclusters.

Sci Bull (Beijing)

November 2024

School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China. Electronic address:

The manipulation of single atom within the metallic kernel of nanoclusters has attracted considerable attention due to its potentials to elucidate kernel-based structure-property relationships at the single-atom level. Herein, new-designed chiral bialkynyl ligands, have been chosen as protective agents to isolate two pairs of 8-electron superatomic silver nanoclusters, R/S-Ag39 and R/S-Ag40. X-ray diffraction analysis reveals that Ag39 and Ag40 with the same number of chiral ligands, possess a closely analogous silver skeleton but a single-atomic difference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!