Glycosylation is a common modification across living organisms and plays a central role in understanding biological systems and disease. Our ability to probe the gylcome has grown exponentially in the past several decades. However, further improvements to the analytical toolbox available to researchers would allow for increased capabilities to probe structure and function of biological systems and to improve disease treatment. This article applies the developing technique of two-dimensional Fourier transform ion cyclotron resonance mass spectrometry to a glycoproteomic workflow for the standard glycoproteins coral tree lectin (CTL) and bovine ribonuclease B (BRB) to demonstrate its feasibility as a tool for glycoproteomic workflows. 2D infrared multiphoton dissociation and electron capture dissociation spectra of CTL reveal comparable structural information to their 1D counterparts, confirming the site of glycosylation and monosaccharide composition of the glycan. Spectra collected in 2D of BRB reveal correlation lines of fragment ion scans and vertical precursor ion scans for data collected using infrared multiphoton dissociation and diagonal cleavage lines for data collected by electron capture dissociation. The use of similar techniques for glycoproteomic analysis may prove valuable in instances where chromatographic separation is undesirable or quadrupole isolation is insufficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.4c00034 | DOI Listing |
Appl Spectrosc
January 2025
Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state PQ to the neutral state PQ, the use of a 20.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
Trivalent chromium (Cr) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr. This study explored the binding process of Cr with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr ions.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003 China. Electronic address:
Two-dimensional metal-organic framework (2D MOF) materials have significant development prospects in the technology of urea-assisted water electrolysis for hydrogen production. However, the poor conductivity, low mass permeability, and stability have limited their development in electrocatalysis. Here, CoFe-BDC is synthesized using layered double hydroxides (LDH) as the template.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Radiation and Environmental Science Centre, Physical to Life Sciences Research Hub, Technological University Dublin, Dublin, Ireland.
Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence.
View Article and Find Full Text PDFUltrasonics
January 2025
Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland. Electronic address:
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!