AI Article Synopsis

  • Spinal cord injury (SCI) causes neurological dysfunction primarily due to neuronal cell death, which includes various types of programmed cell death (PCD) beyond just necrosis and apoptosis.
  • Recent research has identified additional forms of PCD, such as pyroptosis, necroptosis, ferroptosis, and cuproptosis, all of which play significant roles in the progression of SCI.
  • Understanding these mechanisms opens up potential therapeutic avenues to regulate neuronal cell death and improve recovery of neural function after SCI.

Article Abstract

Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-04188-3DOI Listing

Publication Analysis

Top Keywords

cell death
28
neuronal cell
12
sci
10
spinal cord
8
cord injury
8
neurological dysfunction
8
necrosis apoptosis
8
apoptosis autophagy
8
pyroptosis necroptosis
8
necroptosis ferroptosis
8

Similar Publications

Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR).

View Article and Find Full Text PDF

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Colon cancer, as a highly prevalent malignant tumor globally, poses a significant threat to human health. In recent years, ferroptosis and cuproptosis, as two novel forms of cell death, have attracted widespread attention for their potential roles in the development and treatment of colon cancer. However, the investigation into the subtypes and their impact on the survival of colon cancer patients remains understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!