Escherichia coli (E. coli) can induce severe clinical bovine mastitis, which is to blame for large losses experienced by dairy farms. Macrophage polarization into various states is in response to pathogen infections. Lycopene, a naturally occurring hydrocarbon carotenoid, relieved inflammation by controlling M1/M2 status of macrophages. Thus, we wanted to explore the effect of lycopene on polarization states of macrophages in E. coli-induced mastitis. Macrophages were cultivated with lycopene for 24, before E. coli inoculation for 6 h. Lycopene (0.5 μmol/L) significantly enhanced cell viabilities and significantly reduced lactic dehydrogenase (LDH) levels in macrophages, whereas 2 and 3 μmol/L lycopene significantly enhanced LDH activities. Lycopene treatment significantly reduced the increase in LDH release, iNOS, CD86, TNF-α, IL-1β and phosphatase and tensin homolog (PTEN) expressions in E. coli group. 0.5 μmol/L lycopene significantly increased E. coli-induced downregulation of CD206, arginase I (ARG1), indoleamine 2,3-dioxygenase (IDO), chitinase 3-like 3 (YM1), PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, jumonji domain-containing protein-3 (JMJD3) and interferon regulatory factor 4 (IRF4) levels. Moreover, Ginkgolic acid C17:1 (a specific PTEN inhibitor), 740YPDGFR (a specific PI3K activator), SC79 (a specific AKT activator) or CHPG sodium salt (a specific NF-κB activator) significantly decreased CD206, AGR1, IDO and YM1 expressions in lycopene and E. coli-treated macrophages. Therefore, lycopene increased M2 macrophages via inhibiting NOTCH1-PI3K-mTOR-NF-κB-JMJD3-IRF4 pathway in response to E. coli infection in macrophages. These results contribute to revealing the pathogenesis of E. coli-caused bovine mastitis, providing the new angle of the prevention and management of mastitis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-024-03971-zDOI Listing

Publication Analysis

Top Keywords

lycopene
10
macrophage polarization
8
notch1-pi3k-mtor-nf-κb-jmjd3-irf4 pathway
8
pathway response
8
escherichia coli
8
coli infection
8
bovine mastitis
8
polarization states
8
lycopene increased
8
macrophages
7

Similar Publications

In-space biomanufacturing provides a sustainable solution to facilitate long-term, self-sufficient human habitation in extraterrestrial environments. However, its dependence on Earth-supplied feedstocks renders in-space biomanufacturing economically nonviable. Here, we develop a process termed alternative feedstock-driven in-situ biomanufacturing (AF-ISM) to alleviate dependence on Earth-based resupply of feedstocks.

View Article and Find Full Text PDF

Engineering Yarrowia lipolytica for the production of β-carotene by carbon and redox rebalancing.

J Biol Eng

January 2025

Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.

Background: β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.

View Article and Find Full Text PDF

Increasing evidence suggests that carotenoids play an important role in visual and cognitive development during early life. This study aimed to depict the carotenoid profile in maternal/cord plasma and breast milk in three northern cities of China while investigating the association between dietary carotenoid intake and breast milk carotenoid levels. We enrolled 990 lactating mothers from three urban northern Chinese cities to collect breast milk (including colostrum, transitional milk, early mature milk, middle mature milk, and late mature milk).

View Article and Find Full Text PDF

Singlet fission in carotenoid dimers - the role of the exchange and dipolar interactions.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.

A theory of singlet fission in carotenoid dimers is presented which aims to explain the mechanism behind the creation of two uncorrelated triplets. Following the excitation of a carotenoid chain "bright" B+u state, there is ultrafast internal conversion to the intrachain "dark" 1B-u triplet-pair state. This strongly exchange-coupled state evolves into a pair of triplets on separate chains and spin-decoheres to form a pair of single, unentangled triplets, corresponding to complete singlet fission.

View Article and Find Full Text PDF

Recently, the use of plant-derived biostimulants has been suggested as a sustainable way to improve the nutritional quality of tomato and mitigate the effects of environmental stresses In this regard, a two-year experiment was conducted in open field on four cultivars of tomato (two commercial tomatoes and two local landraces of long shelf-life tomato), to assess the crop response, in terms of fruit yield and quality traits, to the foliar application of two plant-derived biostimulants based on protein hydrolysates (PH), under opposite water regimes (no irrigation and full irrigation), in a semi-arid environment of South Italy. Tomato plants in field were sprayed with a solution containing one of the two biostimulants approximately every 15 days. Full irrigation significantly promoted plant productivity, leading to yields the 22 % and 57 % higher than those produced under no irrigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!