Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A general and highly enantioselective method for the preparation of tetra-substituted 3-hydroxyphthalide esters via isothiourea-catalysed acylative dynamic kinetic resolution (DKR) is reported. Using (2S,3R)-HyperBTM (5 mol %) as the catalyst, the scope and limitations of this methodology have been extensively probed, with high enantioselectivity and good to excellent yields observed (>40 examples, up to 99 %, 99 : 1 er). Substitution of the aromatic core within the 3-hydroxyphthalide skeleton, as well as aliphatic and aromatic substitution at C(3), is readily tolerated. A diverse range of anhydrides, including those from bioactive and pharmaceutically relevant acids, can also be used. The high enantioselectivity observed in this DKR process has been probed computationally, with a key substrate heteroatom donor O⋅⋅⋅acyl-isothiouronium interaction identified through DFT analysis as necessary for enantiodiscrimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202402909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!