cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076351PMC
http://dx.doi.org/10.1007/s00299-024-03213-yDOI Listing

Publication Analysis

Top Keywords

heat stress
12
camp-dependent phosphorylation
8
response heat
8
camp modulates
8
phosphorylation status
8
status highly
8
highly conserved
8
conserved phosphosites
8
phosphosites rna-binding
8
rna-binding proteins
8

Similar Publications

The CRY1-COP1-HY5 axis mediates blue-light regulation of Arabidopsis thermotolerance.

Plant Commun

January 2025

College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

High-temperature stress, also referred to as heat stress, often has detrimental effects on plant growth and development. Phytochromes have been implicated in regulating plant heat stress responses, but the role of blue-light receptors, such as cryptochromes, in plant blue light-dependent heat stress response has remained unclear. We found that the blue light receptor cryptochrome 1 (CRY1) negatively regulates heat stress tolerance (thermotolerance) in Arabidopsis.

View Article and Find Full Text PDF

BACKGROUND Indirect ceramic restorations often need multiple firings to match the shade of natural teeth or need after-correction and ceramic addition during the clinical trial stage. Many studies have examined how multiple firings affect the mechanical characteristics of zirconia-veneered prostheses. The effect of firing number on adhesion between these core and heat-pressed lithium disilicate veneering ceramics is unclear.

View Article and Find Full Text PDF

Objective: Patients with cardiovascular disease are considered a high-risk population for heat-related illnesses. This study aimed to describe the difference in physical activity between summer and fall among patients with cardiovascular disease and their recognition of heatstroke prevention in an urban area with high temperature conditions.

Results: We enrolled 56 outpatients who participated in cardiac rehabilitation in the summer of 2022 (median age, 75 years [interquartile range, 68-80]).

View Article and Find Full Text PDF

Background: The endoplasmic reticulum stress (ER stress) has been involved in various musculoskeletal disorders including non-traumatic osteonecrosis of femoral head (NT-ONFH).

Objective: The current study aimed to investigate the association of glucose-regulated protein 78 (GRP78) as well as CCAAT/enhancer-binding protein homologous protein (CHOP) expressions in serum and femoral head (FH) tissues with NT-ONFH's severity.

Methods: We enrolled NT-ONFH patients (n = 150) alongside healthy controls (HCs, n = 150).

View Article and Find Full Text PDF

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!