Editorial for "Associating Knee Osteoarthritis Progression with Temporal-Regional Graph Convolutional Network Analysis on MR Images".

J Magn Reson Imaging

Intermountain Healthcare, Adjunct Associate Professor of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA.

Published: January 2025

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.29440DOI Listing

Publication Analysis

Top Keywords

editorial "associating
4
"associating knee
4
knee osteoarthritis
4
osteoarthritis progression
4
progression temporal-regional
4
temporal-regional graph
4
graph convolutional
4
convolutional network
4
network analysis
4
analysis images"
4

Similar Publications

Finding new ways to treat overdoses.

Elife

January 2025

Department of Pharmaceutical Sciences, University of Kentucky, Lexington, United States.

Reversing opioid overdoses in rats using a drug that does not enter the brain prevents the sudden and severe withdrawal symptoms associated with therapeutics that target the central nervous system.

View Article and Find Full Text PDF

Introduction: Ozoralizumab (OZR) is a novel tumor necrosis factor (TNF) inhibitor that was launched in Japan for treating patients with rheumatoid arthritis (RA) who have had an inadequate response to existing therapies. This post-hoc analysis aimed to compare the efficacy of OZR administered without methotrexate (MTX) with placebo or OZR administration in combination with MTX.

Methods: We analyzed the OZR group (30 mg) in the NATSUZORA trial (non-MTX, open trial) (OZR group; n = 94) and the placebo group (MTX group; n = 75) and the 30-mg OZR group (OZR + MTX group; n = 152) in the OHZORA trial (combined MTX, double-blind trial), and the covariates were adjusted by propensity score matching.

View Article and Find Full Text PDF

High-level production of free fatty acids from lignocellulose hydrolysate by co-utilizing glucose and xylose in yeast.

Synth Syst Biotechnol

June 2025

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.

Lignocellulose bio-refinery via microbial cell factories for chemical production represents a renewable and sustainable route in response to resource starvation and environmental concerns. However, the challenges associated with the co-utilization of xylose and glucose often hinders the efficiency of lignocellulose bioconversion. Here, we engineered yeast to effectively produce free fatty acids from lignocellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!