Purpose: We investigated spatial resolution loss away from isocenter for a prototype deep silicon photon-counting detector (PCD) CT scanner and compare with a clinical energy-integrating detector (EID) CT scanner.

Materials And Methods: We performed three scans on a wire phantom at four positions (isocenter, 6.7, 11.8, and 17.1 cm off isocenter). The acquisition modes were 120 kV EID CT, 120 kV high-definition (HD) EID CT, and 120 kV PCD CT. HD mode used double the projection view angles per rotation as the "regular" EID scan mode. The diameter of the wire was calculated by taking the full width of half max (FWHM) of a profile drawn over the radial and azimuthal directions of the wire. Change in wire diameter appearance was assessed by calculating the ratio of the radial and azimuthal diameter relative to isocenter. t tests were used to make pairwise comparisons of the wire diameter ratio with each acquisition and mean ratios' difference from unity.

Results: Deep silicon PCD CT had statistically smaller ( P <0.05) changes in diameter ratio for both radial and azimuthal directions compared with both regular and HD EID modes and was not statistically different from unity ( P <0.05). Maximum increases in FWMH relative to isocenter were 36%, 12%, and 1% for regular EID, HD EID, and deep silicon PCD, respectively.

Conclusion: Deep silicon PCD CT exhibits less change in spatial resolution in both the radial and azimuthal directions compared with EID CT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495528PMC
http://dx.doi.org/10.1097/RTI.0000000000000788DOI Listing

Publication Analysis

Top Keywords

deep silicon
12
spatial resolution
8
eid 120 kv
8
radial azimuthal
8
wire diameter
8
wire
5
resolution fidelity
4
fidelity comparison
4
comparison energy
4
energy integrating
4

Similar Publications

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

A battery-operated biomedical wearable device gradually assists in clinical tasks to monitor patients' health states regarding early diagnosis and detection. This paper presents the development of a self-powered portable electronic module by integrating an onboard energy-harvesting facility for electrocardiogram (ECG) signal processing and personalized health monitoring. The developed electronic module provides a customizable approach to power the device using a lithium-ion battery, a series of silicon photodiode arrays, and a solar panel.

View Article and Find Full Text PDF

Fast and Sensitive Detection of Anti-SARS-CoV-2 IgG Using SiO@Au@CDs Nanoparticle-Based Lateral Flow Immunoassay Strip Coupled with Miniaturized Fluorimeter.

Biomolecules

December 2024

School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.

The development of a novel strategy for the measurement of SARS-CoV-2 IgG antibodies is of vital significance for diagnosis and effect of vaccination evaluation. In this investigation, an SiO@Au@CDs nanoparticle (NP)-based lateral flow immunoassay (LFIA) strip was fabricated and coupled with a miniaturized fluorimeter. The morphology features and particle sizes of the SiO@Au@CDs NPs were characterized carefully, and the results indicated that the materials possess monodisperse, uniform, and spherical structures.

View Article and Find Full Text PDF

Self-Healing Flexible Fiber Optic Sensors for Safe Underwater Monitoring.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.

The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility.

View Article and Find Full Text PDF

Advancements in Porous Silicon Biosensors for Point of Care, Wearable, and Implantable Applications.

ACS Appl Mater Interfaces

January 2025

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.

Biosensors play a critical role in modern diagnostics, offering high sensitivity and specificity for detecting various relevant clinical analytes as well as real-time monitoring and integrability in point-of-care (POC) platforms and wearable/implantable devices. Among the numerous materials used as biosensing substrates, porous silicon (pSi) has garnered significant attention due to its tunable properties, ease of fabrication, large surface area, and versatile surface chemistry. These attributes make pSi an ideal platform for transducer development, particularly in the fabrication of optical and electrochemical biosensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!