Objective: This systematic literature review aims to assess the impact of COVID-19 on male fertility.

Data Sources: The study draws upon data extracted from PubMed, SciELO, and LILACS databases.

Study Selection: The review incorporates cross-sectional studies, cohort studies, and clinical trials, encompassing investigations related to the subject matter. The studies included were published between June 2020 and March 2023, and encompassed content in English, Portuguese, and Spanish. Exclusion criteria encompassed review articles, case reports, abstracts, studies involving animal models, duplicate articles, and letters to the editor.

Data Collection: Data extracted included the author's name and publication year, the number of patients studied, patient age, the presence of COVID-19 in semen, observed hormonal changes, and alterations in seminal quality.

Conclusions: While hormonal changes and a decline in seminal quality were observed in COVID-19 patients, the virus itself was not detected in semen in the analyzed articles, which contradicts certain findings in the existing literature. It is essential to note that methodologies in the studies were diverse, and, due to the novelty of this infection, it is premature to definitively ascertain its long-term effects on male fertility or whether fertility can recover after a period of convalescence. This underscores the necessity for further research, utilizing more robust methodologies such as cohort studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349263PMC
http://dx.doi.org/10.5935/1518-0557.20240028DOI Listing

Publication Analysis

Top Keywords

impact covid-19
8
covid-19 male
8
data extracted
8
cohort studies
8
hormonal changes
8
studies
6
male reproductive
4
reproductive health
4
health systematic
4
review
4

Similar Publications

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice.

View Article and Find Full Text PDF

The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.

View Article and Find Full Text PDF

COVID-19, caused by SARS-CoV-2, has presented formidable challenges to global health since its emergence in late 2019. While primarily known for respiratory symptoms, it can also affect the ocular surface. This review summarizes the effects of SARS-CoV-2 on ocular surface immunity and inflammation, focusing on infection mechanisms, immune responses, and clinical manifestations.

View Article and Find Full Text PDF

The SARS-CoV-2 infection manifests with diverse clinical manifestations, with severity potentially influenced by the viral variant. COVID-19 has also been shown to impact ocular microcirculation in some patients, but whether this effect varies by viral lineage remains unclear. This prospective study compared clinical features and ocular parameters assessed via optical coherence tomography angiography (OCTA) in patients recovering from SARS-CoV-2 infections during the dominance of two distinctive viral lineages, Alpha (B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!