Cancer screening is based upon a linear model of neoplastic growth and malignant progression. Yet, historical observations suggest that malignant progression is uncoupled from growth which may explain the paradoxical increase in early-stage breast cancer detection without a dramatic reduction in metastatic burden. Here we lineage trace millions of genetically transformed field cells and thousands of screen detectable and symptomatic tumors using a cancer rainbow mouse model of HER2+ breast cancer. Transition rates from field cell to screen detectable tumor and then to symptomatic tumors were estimated from a dynamical model of tumor development. Field cells are orders of magnitude less likely to transition to a screen detectable tumor than the subsequent transition of a screen detectable tumor to a symptomatic tumor. Our model supports a critical occult transition in tumor development during which time a transformed cell becomes a neoplasm. Lineage tracing and test-by-transplantation reveals that nonlinear progression during or prior to the occult transition gives rise to nascent lethal cancers at screen detection. Simulations illustrate how occult transition rates are a critical determinant of tumor growth and malignancy in the lifetime of a host. Our data provides direct experimental evidence that cancers can deviate from the predictable linear progression model foundational to current screening paradigms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071403PMC
http://dx.doi.org/10.1101/2024.04.23.590826DOI Listing

Publication Analysis

Top Keywords

occult transition
16
screen detectable
16
detectable tumor
12
nonlinear progression
8
malignant progression
8
breast cancer
8
field cells
8
symptomatic tumors
8
transition rates
8
tumor symptomatic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!