Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrate and accumulate in the prostate lumen where they differentiate into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify the epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T+E2) and harvested the ventral prostates two weeks later for scRNA-seq analysis, or performed sham surgery. We identified 2+ and + macrophages that were elevated in response to steroid hormone imbalance, whereas a + resident macrophage population did not change. In addition, an Spp1+ foam cell cluster was almost exclusively found in T+E2 mice. Further markers of foam cells were also identified, including and , and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors , , , and . Intriguingly, a screen for chemokines identified the upregulation of epithelial-derived , a known monocyte attractant, in T+E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that respond to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071464PMC
http://dx.doi.org/10.1101/2024.04.24.590980DOI Listing

Publication Analysis

Top Keywords

foam cells
24
steroid hormone
16
hormone imbalance
16
mouse steroid
8
mice implanted
8
testosterone estradiol
8
estradiol pellets
8
pathological role
8
foam
7
identified
6

Similar Publications

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Background: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.

Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.

View Article and Find Full Text PDF

Background: Severe disruption of lipid metabolism in vivo is one of the central mechanisms in the development of atherosclerotic vascular injury (AVI). Reverse cholesterol transport (RCT) plays a pivotal role in eliminating excess cholesterol, preventing lipid deposition in the aorta, and reducing plaque formation associated with AVI. Floralozone (FL) reduces endothelial cell injury in AVI rats by regulating sphingosine-1-phosphate (S1P) expression.

View Article and Find Full Text PDF

Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system.

View Article and Find Full Text PDF

Influence of Structural Optimization on the Physical Properties of an Innovative FDM 3D Printed Thermal Barrier.

Materials (Basel)

December 2024

Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland.

This article describes an innovative thermal insulation barrier in the form of a sandwich panel manufactured using 3D FDM printing technology. The internal structure (core structure) of the barrier is based on the Kelvin foam model. This paper presents the influence of the parameters (the height h and the porosity P of a single core cell) of the barrier on its properties (thermal conductivity, thermal resistance, compressive strength, and quasi-static indentation strength).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!