The "Tea Leaf Age Quality" dataset represents a pioneering agricultural and machine-learning resource to enhance tea leaf classification, detection, and quality prediction based on leaf age. This comprehensive collection includes 2208 raw images from the historic Malnicherra Tea Garden in Sylhet and two other gardens from Sreemangal and Moulvibajar in Bangladesh. The dataset is systematically categorized into four distinct classes (T1: 1-2 days, T2: 3-4 days, T3: 5-7 days, and T4: 7+ days) according to age-based quality criteria. This dataset helps to determine how tea quality changes with age. The most recently harvested leaves (T1) exhibited superior quality, whereas the older leaves (T4) were suboptimal for brewing purposes. It includes raw, unannotated images that capture the natural diversity of tea leaves, precisely annotated versions for targeted analysis, and augmented data to facilitate advanced research. The compilation process involved extensive on-ground data collection and expert consultations to ensure the authenticity and applicability of the dataset. The "Tea Leaf Age Quality" dataset is a crucial tool for advancing deep learning models in tea leaf classification and quality assessment, ultimately contributing to the technological evolution of the agricultural sector by providing detailed age-stratified tea leaf categorization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070690PMC
http://dx.doi.org/10.1016/j.dib.2024.110462DOI Listing

Publication Analysis

Top Keywords

tea leaf
20
leaf age
16
tea
8
age-stratified tea
8
dataset "tea
8
"tea leaf
8
age quality"
8
quality" dataset
8
leaf classification
8
quality
7

Similar Publications

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

A Comprehensive Understanding of Tea Metabolome: From Tea Plants to Processed Teas.

Annu Rev Food Sci Technol

January 2025

4Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea; email:

Tea () is one of the most popular nonalcoholic beverages in the world, second only to water. Six main types of teas are produced globally: green, white, black, oolong, yellow, and Pu-erh. Each type has a distinctive taste, quality, and cultural significance.

View Article and Find Full Text PDF

Nano-selenium fertilizers can promote plant growth and nitrogen availability. However, little information is available on the effects of nano-selenium on tea leaf quality, soil nutrient availability and associated microbe-driven mechanisms. This study examined the effects of nano-selenium on the tea leaf quality and soil nitrogen cycling in 20-year-old tea plantations when the leaves were sprayed with ammonium or nitrate.

View Article and Find Full Text PDF

Brief Warm and Aldo-Keto Reductase Family Contribute to Cold Adaptation of .

Insects

January 2025

State Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.

not only damages plant leaves directly but also causes a sooty blotch due to the honeydew secreted by the nymphs and adults. This pest is widespread and seems to be spreading from low latitude to higher latitude areas where winters are typically colder, indicating an increase in its cold tolerance. Changes in temperature help insects to anticipate the arrival of winter, allowing them to take defensive measures in advance.

View Article and Find Full Text PDF

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!