Objective: Chronic subdural hematoma (CSDH) is a neurological condition with high recurrence rates, primarily observed in the elderly population. Although several risk factors have been identified, predicting CSDH recurrence remains a challenge. Given the potential of machine learning (ML) to extract meaningful insights from complex data sets, our study aims to develop and validate ML models capable of accurately predicting postoperative CSDH recurrence.

Methods: Data from 447 CSDH patients treated with consecutive burr-hole irrigations at Wenzhou Medical University's First Affiliated Hospital (December 2014-April 2019) were studied. 312 patients formed the development cohort, while 135 comprised the test cohort. The Least Absolute Shrinkage and Selection Operator (LASSO) method was employed to select crucial features associated with recurrence. Eight machine learning algorithms were used to construct prediction models for hematoma recurrence, using demographic, laboratory, and radiological features. The Border-line Synthetic Minority Over-sampling Technique (SMOTE) was applied to address data imbalance, and Shapley Additive Explanation (SHAP) analysis was utilized to improve model visualization and interpretability. Model performance was assessed using metrics such as AUROC, sensitivity, specificity, F1 score, calibration plots, and decision curve analysis (DCA).

Results: Our optimized ML models exhibited prediction accuracies ranging from 61.0% to 86.2% for hematoma recurrence in the validation set. Notably, the Random Forest (RF) model surpassed other algorithms, achieving an accuracy of 86.2%. SHAP analysis confirmed these results, highlighting key clinical predictors for CSDH recurrence risk, including age, alanine aminotransferase level, fibrinogen level, thrombin time, and maximum hematoma diameter. The RF model yielded an accuracy of 92.6% with an AUC value of 0.834 in the test dataset.

Conclusion: Our findings underscore the efficacy of machine learning algorithms, notably the integration of the RF model with SMOTE, in forecasting the recurrence of postoperative chronic subdural hematoma. Leveraging the RF model, we devised an online calculator that may serve as a pivotal instrument in tailoring therapeutic strategies and implementing timely preventive interventions for high-risk patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071664PMC
http://dx.doi.org/10.3389/fneur.2024.1305543DOI Listing

Publication Analysis

Top Keywords

machine learning
16
chronic subdural
12
subdural hematoma
12
synthetic minority
8
minority over-sampling
8
recurrence
8
recurrence postoperative
8
postoperative chronic
8
csdh recurrence
8
learning algorithms
8

Similar Publications

Background: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective blood glucose control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence demonstrates marked interindividual differences in postprandial glucose response (PPGR) although no such data exists in India and previous studies have primarily evaluated PPGR variation in individuals without diabetes.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.

Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Importance: Associations between child maltreatment (CM) and health have been studied broadly, but most studies focus on multiplicity (number of experienced subtypes of CM). Studies assessing multiple CM characteristics are scarce, partly due to methodological challenges, and were mostly conducted in patient samples.

Objective: To determine the importance of CM characteristics in association with physical multimorbidity in adulthood for women and men in a German representative sample.

View Article and Find Full Text PDF

Looking at the world often involves not just seeing things, but feeling things. Modern feedforward machine vision systems that learn to perceive the world in the absence of active physiology, deliberative thought, or any form of feedback that resembles human affective experience offer tools to demystify the relationship between seeing and feeling, and to assess how much of visually evoked affective experiences may be a straightforward function of representation learning over natural image statistics. In this work, we deploy a diverse sample of 180 state-of-the-art deep neural network models trained only on canonical computer vision tasks to predict human ratings of arousal, valence, and beauty for images from multiple categories (objects, faces, landscapes, art) across two datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!