AI Article Synopsis

  • TET proteins, particularly TET3, are crucial for DNA demethylation in developing T cells, impacting their lineage specification.
  • TET3 interacts with multiple proteins, indicating its complex roles beyond just DNA demethylation.
  • Research using mass spectrometry reveals that TET3 is involved in various essential biological processes, setting the foundation for further studies on its specific roles in T cell development.

Article Abstract

Ten-eleven translocation (TET) proteins are DNA dioxygenases that mediate active DNA demethylation. TET3 is the most highly expressed TET protein in thymic developing T cells. TET3, either independently or in cooperation with TET1 or TET2, has been implicated in T cell lineage specification by regulating DNA demethylation. However, TET-deficient mice exhibit complex phenotypes, suggesting that TET3 exerts multifaceted roles, potentially by interacting with other proteins. We performed liquid chromatography with tandem mass spectrometry in primary developing T cells to identify TET3 interacting partners in endogenous, conditions. We discover TET3 interacting partners. Our data establish that TET3 participates in a plethora of fundamental biological processes, such as transcriptional regulation, RNA polymerase elongation, splicing, DNA repair, and DNA replication. This resource brings in the spotlight emerging functions of TET3 and sets the stage for systematic studies to dissect the precise mechanistic contributions of TET3 in shaping T cell biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070343PMC
http://dx.doi.org/10.1016/j.isci.2024.109782DOI Listing

Publication Analysis

Top Keywords

developing t cells
12
thymic developing
8
dna demethylation
8
tet3
8
tet3 interacting
8
interacting partners
8
dna
5
deciphering tet3
4
tet3 interactome
4
interactome primary
4

Similar Publications

: Rhamnetin 3--α-rhamnoside (ARR) is a major flavonoid of the herb Franch. & Sav., which has been used for treating liver diseases in China.

View Article and Find Full Text PDF

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Optimization and characterization studies of poultry waste valorization for peptone production using a newly Egyptian Bacillus subtilis strain.

AMB Express

January 2025

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.

Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a highly prevalent malignancy with limited treatment efficacy despite advances in immune checkpoint blockade (ICB) therapy. The inherently weak immune responses in HCC necessitate novel strategies to improve anti-tumor immunity and synergize with ICB therapy. Kinesin family member 20A (KIF20A) is a tumor-associated antigen (TAA) overexpressed in HCC, and it could be a promising target for vaccine development.

View Article and Find Full Text PDF

Understanding the Preclinical Efficacy of Antibody-Drug Conjugates.

Int J Mol Sci

November 2024

Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.

Antibody-drug conjugates (ADCs) represent a therapeutic modality that guides chemotherapies to tumoral cells by using antibodies against tumor-associated antigens (TAAs). The antibody and the chemotherapy or payload are attached by a chemical structure called the linker. The strategy for the development of this type of drug was based on several rational pillars, including the use of a very potent payload and the use of specific antibodies acting only on antigens expressed on tumoral cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!