Rice husk reuse as a sustainable energy alternative in Tolima, Colombia.

Sci Rep

PhD Sustainability, Universidad Centro Panamericano de Estudios Superiores (UNICEPES), Michoacán, Mexico.

Published: May 2024

Colombia has great potential to produce clean energy through the use of residual biomass from the agricultural sector, such as residues obtained from the life cycle of rice production. This document presents a mixed approach methodology study to examine the combustion of rice husks as a possible energy alternative in the Tolima department of Colombia. First, the physicochemical characteristics of the rice husk were analyzed to characterize the raw material. Next, System Advisor Model (SAM) software was used to model a bioenergy plant to obtain biochar, bio-oil, and biogas from the combustion of rice husks and generate performance matrices, such as thermal efficiency, heat rate, and capacity factor. Then, the project was evaluated for financial feasibility using a mathematical model of net present value (NPV) with a planning horizon of 5 years. Finally, a subset of the local population was surveyed to assess perspectives on the project in the region. The results of the rice husk physicochemical analysis were the following: nitrogen content (0.74%), organic carbon (38.04%), silica (18.39%), humidity determination (7.68%), ash (19.4%), presence of carbonates (< 0.01%), and pH (6.41). These properties are adequate for the combustion process. The SAM simulation showed that the heat transferred in the boiler was 3180 kW, maintaining an efficiency between 50 and 52% throughout the 12 months of the year, meaning that the rice husk can generate electricity and thermal energy. The financial analysis showed that the internal rate of return (IRR) was 6% higher than the opportunity interest rate (OIR), demonstrating economic feasibility of the project. The design and creation of a rice husk processing plant is socially and environmentally viable and has the potential to contribute to the economic development of the Tolima community and reduce greenhouse gases. Likewise, this activity has the potential to promote energy security for consumers and environmental sustainability while at the same time being economically competitive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074129PMC
http://dx.doi.org/10.1038/s41598-024-60115-5DOI Listing

Publication Analysis

Top Keywords

rice husk
12
energy alternative
8
alternative tolima
8
combustion rice
8
rice husks
8
rice
6
husk reuse
4
reuse sustainable
4
sustainable energy
4
tolima colombia
4

Similar Publications

Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.

View Article and Find Full Text PDF

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.

View Article and Find Full Text PDF

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!