Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs.

J Ind Microbiol Biotechnol

School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.

Published: January 2024

Unlabelled: The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research.

One-sentence Summary: This comprehensive review of AFPs will be helpful for further research in antifungal research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119867PMC
http://dx.doi.org/10.1093/jimb/kuae018DOI Listing

Publication Analysis

Top Keywords

antifungal
8
antifungal peptides
8
antifungal drugs
8
afps
6
exploring frontiers
4
frontiers therapeutic
4
therapeutic breadth
4
breadth antifungal
4
peptides avenue
4
avenue antifungal
4

Similar Publications

Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.

View Article and Find Full Text PDF

Infectious diseases, including bacterial, fungal, and viral, have once again gained urgency in the drug development pipeline after the recent COVID-19 pandemic. Tuberculosis (TB) is an old infectious disease for which eradication has not yet been successful. Novel agents are required to have potential activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of TB.

View Article and Find Full Text PDF

European honey bee (Apis mellifera) colonies are an ideal host to the invasive beetle Aethina tumida, providing a nutrient rich environment that is protected from the elements and facilitates beetle reproduction. Although various management techniques and chemical treatments for A. tumida have been developed, understanding the efficacy of these treatments and techniques is limited.

View Article and Find Full Text PDF

Synthesis and antifungal activity of aldehydes-thiourea derivatives as promising antifungal agents against  postharvest gray mold disease.

Chem Biodivers

January 2025

Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.

Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.

View Article and Find Full Text PDF

Cannabinoid and stilbenoid compounds derived from were screened against eight specific fungal protein targets to identify potential antifungal agents. The proteins investigated included Glycosylphosphatidylinositol (GPI), Enolase, Mannitol-2-dehydrogenase, GMP synthase, Dihydroorotate dehydrogenase (DHODH), Heat shock protein 90 homolog (Hsp90), Chitin Synthase 2 (CaChs2), and Mannitol-1-phosphate 5-dehydrogenase (M1P5DH), all of which play crucial roles in fungal survival and pathogenicity. This research evaluates the binding affinities and interaction profiles of selected cannabinoids and stilbenoids with these eight proteins using molecular docking and molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!